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Abstract—A key factor that makes action detection in videos
differing from general video classification is human-guided clues
especially motion signals. Since not all pixels in a video are
informative for action recognition, the irrelevant and redundant
parts can bring much noise and extra burden for both feature
extraction and classifier training. This encourages researchers to
seek the design of attentive model that can dynamically focus
computations on the key spatiotemporal volumes. In this paper,
we propose a motion-centric attention model for action detection
in videos which imitates the human perception of saccade and
fixation procedure when detecting actions in a video. Specifically,
we first present a strategy to generate motion-centric locations
based on the density peak of motion signals, providing reliable
candidates around which actions have high possibilities to occur.
Then we introduce an attention model which conducts saccade
and fixation procedures on these candidates to observe local
spatiotemporal visual information, preserves internal compre-
hension, and produces action proposals on temporal bounds.
Afterwards, a classifier with several variants is prepared to
classify the action proposals and decide which one to fixate and
generate the final predictions. We show how to efficiently train
our model to produce fast and accurate action detection, by
only scanning a small fraction of locations in a video. Extensive
experiments on three challenging datasets show promising results
in both accuracy and speed.

Index Terms—Action detection, motion-centric, attention mod-
el, recurrent neural network

I. INTRODUCTION

CTION detection in videos is a challenging problem,

and has drawn increasing interests in computer vision
and multimedia community due to its potential applications in
video surveillance, human computer interaction, video content
analysis, efc. It is required to determine both the semantic
label of an action along with when it starts and ends in a
video. Current algorithms typically employ visual information
of all frames for action detection (Fig. EI) [1] [2]]. In both
traditional bag-of-features methods and deep learning models,
each frame is processed to extract frame-level features and fed
to classifiers exhaustively through the entire video to produce
action predictions [3]] [4] [5]. The runner up submission in
ActivityNet Detection Challenge 2016 also needs to score
every frame to assist localization and classification [6]. These
approaches are not efficient since the computational complexi-
ty inevitably depends on the video size. Besides, the irrelevant
frames are a heavy burden for both feature extraction and
classifier training. A natural way to escape this problem is
to select several key frames and collect features around key
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frames to represent the entire video [[7] [8]. However, this may
neglect motion clues in different temporal scales and long-
range structures [9] [10].

Recently, human-inspired techniques have achieved remark-
able success in a wide range of problems [[L1] [[12] [13] [14]]
(LS [16] (171 [18] [191 [20] [21] [22]. We also seek for
efficient solutions for action detection from the way of human
perception. Previous works [23] [24] suggest that high-acuity
vision is restricted to a small foveal region surrounding the
current fixation point, with acuity dropping off precipitously
from that focal point. In image recognition, the visual system
handles this constraint by rapidly reorienting the eyes an av-
erage of three times each second via saccadic eye movements
[25]. Construction of a complete visual representation would
therefore seem to require the storage of a high-resolution
image across saccade, with images from consecutive fixations
overlapped or spatially aligned to form the composite image
[26]. This is consistent to the behavior of eye-movement
when searching actions in videos [27]: In most cases, human
would not process the entire scene at once. Instead they often
selectively focus on some portions to acquire representative
information, form an internal presentation by integrating what
they have saw, and gradually fixate the region of interest.
Utilizing such attention mechanism [28], some efforts have
demonstrated effectiveness in image recognition [29], natural
language processing [30] and speech recognition [31f]. We
extend in spatiotemporal domain and study its potential for
action detection in videos.

In this paper, we propose a motion-centric attention model
that can automatically localize and recognize actions in long,
untrimmed videos by scanning only a few fragments for a
video. Our model mainly consists of three parts, i.e. a motion-
centric location generator, an attention network and a classifier.
The first part is generating motion-centric locations in an
unsupervised manner using the density of local descriptors.
These generated candidates serve as a prior knowledge to
prevent the following attention network from distraction of
irregular visual information, which we show can contribute
significant improvement on both accuracy and speed. The
second part is an attention network which aims to generate
high recall temporal proposals. Our intuition is that observing
frames at a few positions in a video can gradually narrow
down the extent where an action might occur, as shown in
Fig. [I] Moreover, visual representation extracted only from
the generated proposal is sufficient for a classifier to further
distinguish the foreground and background. To this end, our
attention network is implemented around a recurrent neural
network (RNN), which takes a location and the corresponding
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Fig. 1. Comparison with most existing action detection strategies. The proposed method (up) only observes a small fraction of continuous frames (green part)
while most recent approaches (down) rely on visual clues of the entire video that need to compute features of all frames.

video fragment as input and outputs a possible action bound
at each time step. The third part is an off-line classifier. After
the temporal proposals are generated, the classifier encodes
a few frame-level features from each proposal and outputs
scores for all classes. We experiment several classifiers with
different training strategies and show clear difference. The
proposed method can successfully escape the distraction of
irrelevant visual signals, and consequently obtain a fast and
accurate prediction of actions. We show the efficiency of our
system in both accuracy and speed on three challenging large-
scale benchmarks. Compared with most recent approaches for
action detection, our method needs less runtime and produces
more reliable predictions.

The main contributions of this paper are summarized as
follows: First, we propose a motion-centric attention model
for action detection. Relevant works often integrate location
transfer and visual recognition in the attention model, we show
such setting may led to ambiguous semantic understanding
since localization requires global information while classifi-
cation requires visual clues of specific actions. Besides, we
introduce several good practices such as classifier design and
training manners using attention model for action detection,
and demonstrate their effectiveness over pervious method-
s. Second, we introduce a technique to generate location
candidates around which an action has high possibilities to
occur. Compared with existing proposal extraction methods
that need complex computation referring to ground truth, the
proposed method performs in an unsupervised manner and
can produce high quality candidates. This can help attention
model jump under a reasonable subset instead of stochastic
space in previous attention-based methods. Third, we conduct
extensive experiments on three large-scale benchmarks and
report competitive results in terms of both accuracy and speed.

The rest of this paper is structured as follows. Section [II]
reviews relevant works on action detection especially using
motion mining and visual attention, followed by our proposed
model and detailed implementations in Section Then, we
provide experimental results and comprehensive analysis in
Section [[V] Finally, we conclude our paper in Section [V]

II. RELATED WORK

There is a long history of work in video analysis and action
detection [32] [33]] [34] [35]] [36] [37] [38]. In the following we
first review related works from the perspectives of hand-crafted
features and deep learning models. Then we review attention-
based models which is similar to our method, especially their

use in action detection. For more comprehensive studies, we
refer to surveys [39] [40] [41].

A. Hand-crafted feature for action detection

Early action detection methods rely heavily on hand-crafted
features. In particular, [42] first extended 2D Harris corner
detector to obtain representative tubes in 3D space. Since then
many 2D local descriptors are extended to 3D version for
video understanding such as HOG3D [43]] and 3D-SIFT [44].
A comprehensive evaluation in [45] compared different STIP
detectors and descriptors. The authors drew conclusions that
the performance of STIPs is dataset dependent. Besides, many
attempts have been made to explore relevant relationships of
STIPs for action recognition, which usually pursue higher or-
der statistics of the already extracted STIPs, such as pairs [46],
groups [47]], point clouds [48], alignment [49] and clusters
[S0]. Recently, [51] made use of point trajectories to extract
and align 3D volumes, and resorted to more rich low level
descriptors for constructing effective video representations,
including HOGHOF and MBH. An improved version of dense
trajectory is updated in [1] to estimate camera motion, and
obtained state-of-the-art results on a variety of benchmarks.

Although local hand-crafted features yield promising result-
s, one limitation is that they lack semantics and discriminative
capacity. To overcome this issue, several mid-level and high-
level video representations have been proposed such as Action
Bank [52f], Dynamic-Poselets [53]], Actons [34], Tubelets [55]].
They usually resorted to some heuristic mining methods to
select discriminative visual elements as feature units. But these
methods still need to compute visual signals of the entire
video, while our system can escape these limitations by only
scanning a few number of specific locations.

B. Deep learning for action detection

In contrast to the hand-crafted features, there is a grow-
ing trend of learning features directly from raw data using
deep learning techniques, which has achieved great success
in image-based tasks [13] [56]] [S7]. A number of attempts
have developed deep architectures especially convolutional
neural network (CNN) for video action detection [2] [58]
[59] [60] [61] [62] [63] [64] [65]. In particular, [59] extended
2D ConvNet to video domain by stacking static frames for
action recognition on relatively small datasets, and recently
[S8] tested similar deep networks on a large dataset (Sports-
1M). However, these deep models achieved lower performance
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compared with shallow hand-crafted representation [1], which
might be ascribed to the following reasons. Firstly, available
action datasets are relatively small for deep learning. Secondly,
learning complex motion patterns is more challenging. Most
CNN-based approaches rely on the neural networks to perform
the final class label prediction, normally using a softmax layer
[2] [S8]] or a linear layer [59]. Instead of direct prediction
by deep neural networks, [66] conducted action recognition
using support vector machines (SVMs) with features extracted
from off-the-shelf CNN models. Their impressive results in
the THUMOS action recognition challenge [67] indicate that
CNN features are very powerful. Very recently, [60]] proposed
C3D spatiotemporal features learnt from carefully designed
deep convolutional networks and demonstrated competitive
performance with dense trajectories.

In addition, a few works apply the CNN representations with
RNN models to capture temporal information in videos and
perform classification within the same network. [68]] [69] [[70]
leveraged RNN model with LSTM units for action recognition
and [71]] proposed to translate videos directly to sentences
with the LSTM model by transferring knowledge from image
description tasks. Combining RNNs with CNNs for video un-
derstanding also shares the same motivation with the temporal
pathway in the popular two-stream framework [2]]. Our method
also uses RNN structure but within an attention model.

C. Attention model for action detection

Recently visual attention model is extremely popular, which
aims to capture the property of human perception mechanism
by selectively observing and consequently identifying the
interesting regions in a scene. A recent survey reviews RNN-
based attention models and their applications to computer
vision tasks [72]. Also, there are many attention-based models
proposed for video analysis [73]] [74] [75] and action recogni-
tion [[76] [[Z7] [Z8] [[79] [80]] [81] [82]. Our model makes non-
trivial efforts and differs from them in the following aspects:
First, existing attention models such as [29] [83] [75] [77] [81]
tends to train visual analyzer and attention policy in an end-
to-end manner, sharing information from hidden states of the
recurrent neural network. However, it may lead the model to
ambiguous semantic understanding since localization requires
global information while classification requires visual clues of
specific actions. Based on this insight, our model uses serial
design, and employs an attention model to fetch appreciate
action proposals used for more precise classification with a
well-trained classifier. We provide several types of classifiers
and training manners, demonstrating the advantages over pre-
vious strategies. Second, at each training step, we choose to
observe a short fragment of several continuous frames rather
than just a single frame [75] [80] [[77]. This choice aims at
making use of both spatial and temporal visual information,
which we show can lead to more precise detection. Third,
instead of stochastic attention over the entire searching space
which is used in most attention models [29] [83]] [75] [74]]
[78]], we introduce a novel clustering-based method to generate
sparse yet reliable location candidates using the density peak
of motion signals. These candidates concentrate on motion-

centric regions, providing reliable initialization and searching
space for our attention model.

ITII. MODEL

In this section, we first give an overview of our system in
Section where the execution flow is offered along with
component relations. Then, we present the key components
including the model structure and training manner. More
specifically, Section [[II-B| introduces a technique to generate
motion-centric location candidates based on the density of
local descriptors, which are prepared for the attention model.
Then, we build our attention network used to produce action
proposals in Section Afterwards, in Section we
introduce an off-line classifier used to analyze the generated
action proposals and produce the final prediction.

A. Overview

Our model mainly consists of three parts: a motion-centric
location generator, an attention network and a classifier, as
shown in Fig. In particular, given an input video, we
first generate a few motion-centric locations using density
information of local spatiotemporal descriptors in an unsuper-
vised way. These candidates have high possibility to detect
actions since most action instances occur around locations
containing dense motion signals. More importantly, they serve
as a prior knowledge to prevent our attention network from
distraction of irregular regions, which we show can contribute
significant improvement on both accuracy and speed. The
attention network is designed to produce high recall action
proposal. It has four subnetworks responsible for observ-
ing location candidates, preserving internal comprehension,
generating temporal bounds and determining next location,
separately. The third part is an off-line classifier. After the
action proposals are generated, the classifier encodes a few
frame-level features from each proposal and outputs scores
for all classes to determine the final prediction of the highest
confidence. We design several classifiers with different training
strategies and show clear advantages over other choices in
existing attention-based models.

B. Motion-centric location generator

Videos are well known containing much redundant infor-
mation among consecutive frames. Such issue is often dealt
with hand-crafted solutions such as frame sampling [[10] and
motion extraction [84] [85)]. However, these methods may not
be suitable in our case since our attention model is expected to
receive locations around which actions have high confidence
to occur. Here we introduce a technique based on motion
density to obtain location candidates, which we show have
high probabilities to contain key actions and also be suitable
for the following stages. This approach can also be regarded
as a general prior step for other video-specific tasks such as
saliency detection.

We first extract a set of motion signals of the input video
which is optical-flow-based feature in spatiotemporal domain.
In practice, we use dense trajectory [51] (comparison of
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Fig. 2. Illustration of the overall system. From bottom to up is the execution procedure. Given an input video, we first generate some motion-centric location
candidates using density information of local spatiotemporal descriptors. We then extract local spatiotemporal features around these candidates prepared for
our attention model. The model sequentially processes these observations and produces the action proposals which are sent to well-trained classifier to generate
final prediction for the task of action detection. The detailed structure of attention model can be seen in Fig. []

’ Generating motion-centric location candidates using density peak

I N -

=>2T

Fig. 3. Location candidates generated with density peak of motion signals.
From bottom to up: Given a video, we first extract local descriptors (perfor-
mance comparison can be seen in Table m), which are then clustered using its
density peaks. Afterwards, we obtain the location candidates corresponding
to the clustering center, which is ready for our attention model to jump upon
to produce action proposals.

other local features can be seen in Table [[). Next we cluster
these motion signals to obtain a distribution over the entire
spatiotemporal space and utilize the density peaks to generate
location candidates. Since motion signals are of high number
and dimension, it is difficult to define its category number in
advance. We introduce a clustering approach which requires
its basis only in the distance between data points. We are going
to employ density peaks to pursue a reasonable clustering and
in turn, leverage these peaks for candidate generation.

The algorithm has its basis in the assumptions that cluster
centers are surrounded by neighbors with lower local density
and that they are at a relatively large distance from any points
with a higher local density [86]. In practice we find Euclidean
distance is the best choice. For each feature i, we compute

two quantities: its local density r; and its distance d; from
features of higher density. Both these quantities depend only
on the distances d;; between two features ¢ and j, which are
assumed to satisfy the triangular inequality. We define the local
density r; of feature ¢ as

ri = x(dij — de) )
j

where x(z) =1 if x < 0 and x(z) = 0 otherwise, and d is a
cutoff distance. Basically, r; is equal to the number of points
that are closer than d. to point i. This procedure is sensitive
only to the relative magnitude of r; in different features, which
means the results of the analysis are robust with respect to the
choice of d. for large sets. In addition, v; is measured by
computing the minimum distance between feature ¢ and any
other point with higher density

wi = min (dz]) 2)

Jiri>r;

For the feature with the highest density, we set ;
max;(d;;) over the entire set of descriptors. Note that v; is
much larger than the typical nearest neighbor distance only for
points that are local or global maxima in the density. Thus,
cluster centers are recognized as features for which the value
of v; is anomalously large. Finally we select the density peaks
as our location candidates, prepared for the following stages.
A typical processing procedure can be seen in Fig. [3]

C. Attention model

The goal of our attention model is to take a set of location
candidates which are generated in Section [[II-B|and output any
detected action instances. As discussed in Section[[} we expect
it can gradually attend the region of interest by scanning only a
few fragments in a video. This procedure requires to preserve
an internal comprehension of its continuous observations in
discrete steps. Thus we choose to formulate our attention
network as an RNN h; that interacts with observed location
candidates over time ¢, as shown in Fig. ]
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Fig. 4. Illustration of our attention model. The center is an recurrent neural network. At each time step, it observes current location candidate, and receives
three parts: current location ¢, visual clues v¢ and its last state ht—1. On the other hand, it outputs two parts: an action proposal (s, e¢) as well as the next
location l;41. The figure shows a typical procedure for several attention steps from left to right.

As can be seen in Fig. ] at each time step ¢, the network
receives the current candidate location [; and the observation
feature vector v; around the location candidate in a local
spatiotemporal region. In practice, we use the fc7 feature
extracted from a pre-trained C3D network [60]. Both of them
serve as a part of the input of RNN’s hidden state h;. In
addition, the other input of h, is its previous state h;_;, used
to accumulate and integrates what it has observed and the
temporal and semantic hypotheses about action instances. The
model is expected to gradually exclude locations we are not
interested in, and narrow down where an activity might occur.

The outputs of our attention model are divided into two
parts. The first one is a temporal prediction using a temporal
bound regressor. We design it with fully connected layers. The
regressor propagates h; and directly predicts a tuple p;(s:, e)
which is normalized into [0, 1}2 as a temporal proposal of an
action instance, where s; and ¢; are the start and end locations,
respectively. The second is the next location candidate to
observe which is governed by an attention policy. Since we
would not examine every possible candidate, such policy
needs to be learned with reinforcement learning, namely soft
attention mechanism as discussed in Section In the
following we describe the training manner of the two parts.

Training. In recent attention-based video analysis works
[74] [75] [76] [88] [771 [78] [791 [80] [81], the generation
and evaluation of proposals are conducted simultaneously.
Although the internal comprehension of RNN can be utilized
for multi-task for an attention-based model, however, in our
perspective, extra information from previous RNN steps is not
necessary to classify the current proposal, as good classifier
can be pre-trained from large scale database, in a off-line
manner. Therefore, to generate high quality proposals and
classify them more accurately, we train the attention model and
classifier separately, where the latter is described in Section
[1-D

As addressed above, the attention network produces an

action bound prediction p;(s:,e;) and a location [; at each
time step. When training the temporal bounding regressor, a
ground truth action segment needs to be selected to refine
the prediction at each time step. Given a set of ground truth
G = {g;} for a video, for each p,, if there exists at least one
g; overlapping with p;, the one with a maximum overlap is
chosen as the ground truth g.(s, e.). Otherwise, the one with
a minimum distance with p; should be selected. Besides, for
each pair of p; and g; at time step ¢, a matching indicator my;
is set 1 if g; has the largest overlap with g., while m;; = 0 for
other situations. The overlap and distance function are defined

as )
min(es, e;) — max(sy, S;)

overlap(p;, gi) = 3)

max(et, e;) — min(sg, s;)

“4)

where dist measures the distance between two video clips [78].
Once g, is chosen, the loss function for the temporal bounding
regressor can be formulated using a smooth £; loss

dist(pt, g;) = min(|s; — e;], |er — i)

ec) (5)

where smooth., is a widely used loss function less sensitive
to outliers [89]

Lioc(pt, gc) = smoothz, (s; — s.) + smooth., (e; —

0.5x2 if || <1
|x] — 0.5 otherwise

smooth., (z) = (6)

Since attention policy is in a non-differentiable setting (we
would not examine every possible candidate) and conventional
back-propagation is not adequate here, we turn to reinforce-
ment learning which evaluates each decision by a reward, and
learns to find the optimal sequence of observation location
with highest cumulate reward. At each single step, a scalar
reward r; is evaluated. If overlap(p:,g.) is larger than a
threshold (which is set 0.5 in our work), 1 will be assigned to
r¢, otherwise r; is set —0.1. The cumulative reward R; after
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Fig. 5. Sample frames from MPII-Cooking (top), THUMOS’14 (middle) and ActivityNet (bottom) datasets. The first two datasets contain more simple,
background-fixed actions while ActivityNet contains more complex, multi-person videos.

t steps is formulated as R; = ijl,m 75 The goal of the
training procedure is to minimize the difference between the
predictions and the ground truth as well as maximize the final
cumulative reward Rp. We define the total loss function over
the prediction set L£(P) as following

L(P) = ZZ [me; = 1 Lioc(pt, 9i) — ART @)

where the hyper-parameter A is set 1 in all experiments. We
use reinforcement learning with REINFORCE algorithm to
optimize this loss function.

D. Classifier

Once we obtain the temporal bounds of action proposals,
we are going to classify them using our off-line well-trained
classifiers. Some recent attention-based approaches such as
[73]] [77) directly use features from hidden states for
visual prediction. However, what the model has observed
may be action-unrelated or contain different actions so these
features are farraginous and inappropriate for classifying spe-
cific actions. Instead, a softmax classifier is used in our
work to classify temporal proposals. The classifier simply
consists of two fully connected layers, a ReLU layer and a
softmax layer. The classifier receives C3D features from a
short video fragment around the action proposals and outputs
a probability distribution for all action classes. We experiment
several training strategies on our classifier to explore good
practices for better performance of action detection.

In practice, to train a reliable classifier, we first trim the
videos of training set into foregrounds and backgrounds, which
are used for positive and negative samples respectively. Next
we design three kinds of training strategies.

o “Normal”: For each positive or negative trimmed video,
we randomly sample n local spatiotemporal features and
concatenate them into a feature vector. The classifier then
propagates this feature vector and outputs scores for K
classes along with the background. Typically, n is set 5
throughout our experiment.

o “Left+Right”: Based on “Normal”, on the left and right
to each trimmed video, we randomly generate 2 more
video segments as training samples. These two segments
have a high overlap, which is set 0.8, with the trimmed
video, thus they share the same label. Since the prediction
of attention model tend to contain both foreground and

background information, when trained with these generat-
ed segments including similar information, classifier may
perform a more precise classification performance.

e “Only-Positive”: Ignoring the negative samples, we ran-
domly sample one local spatiotemporal feature from each
positive trimmed video to train a K-class classifier. At
test-time, the features extracted from the middle location
of the proposal is used to perform classification.

In addition to the softmax classifier, we also train an one-
vs-all linear SVM for each action class. When training a class-
specific SVM classifier, we utilize all trimmed videos of other
categories as negative samples, including foregrounds and
backgrounds. Experiments shows the results and comparison
of different settings in Section [[V-C| (see Table [[T]] and [[] for
details).

IV. EXPERIMENTS
A. Datasets and evaluation protocols

We test our method on three challenging datasets, i.e. MPII-
Cooking, THUMOS’ 14 and ActivityNet. Sample examples of
video frames are illustrated in Fig. [3}

The MPII-Cooking is a large fine-grained cooking
activities dataset. It contains 44 videos with a total length of
more than 8 hours of 12 participants performing 65 different
cooking activities. It consists of a total of 5,609 annotations
spread over the 65 activity categories, including a background
class for the action detection task. Following the standard
protocol in [90], we have 7 splits after performing leave-one-
person-out cross-validation. Each split uses 11 subjects for
training, leaving one for validation.

The THUMOS’14 [91] dataset is considered to be one of
the most challenging datasets for action detection, which is
dedicated to localizing action instances in long untrimmed
videos. The trimmed videos used for training are 2, 755 videos
of these 20 actions in UCF101 dataset [92]]. The validation set
contains 1,010 untrimmed videos with temporal annotations
of 3,007 instances in total. The test set contains 3, 358 action
instances from 1574 untrimmed videos, whereas only 213
of them contain action instances of interest. We exclude the
remaining 1,361 background videos in the test set.

The ActivityNet [93] dataset comprises 28K videos of 203
activity categories collected from YouTube. It consists of 68.8
hours of temporal annotations in 849 hours of untrimmed,
unconstrained video. There are 1.41 action instances per
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Fig. 6. Performance comparison on the “Playing sport” subset of ActivitNet
dataset using different RNN structures as our attention model. Note that all
the structures has 256 of unit for each layer.

TABLE I
PERFORMANCE (%) IMPACT OF DIFFERENT LOCAL SPATIOTEMPORAL
DESCRIPTORS FOR CANDIDATE GENERATION. ON “PLAYING SPORTS”
SUBSET OF ACTIVITYNET DATASET.

[ Hand-crafted | mAP || CNN-based | mAP |
iDT [IL] 25.2 C3D [60] 13.4
HOG3D [43] 19.7 Deep Two-Stream CNNs [10] 21.4
3D-SIFT [44]] 18.5 Hidden Two-Stream CNNs [95] | 22.5

video and 193 instances per class. More importantly, many
activities are relatively long and complex, and the viewpoint
and foreground objects may change significantly within the
same activity. The authors of ActivityNet use one fourth of the
dataset as a validation set, but have not released the test set
used in their paper. In our experiments, we use the validation
set as our test set following [94].

Evaluation metric. We follow the conventional metrics
used in temporal action detection task to regard it as a
retrieval problem, and evaluate mean average precision (mAP).
A prediction P is marked as correct only when it has the
correct category prediction, and has intersection over union
(IOU) with ground truth G larger than the IOU threshold «

_ Ll Gk
9] &= Gy U Py

where ¢ is the test set. Following most relevant works, we
conduct experiments with various of « from 0.1 to 0.5.

(G, P) @®)

feod

B. Implementation details

This part presents the implementation details of our model.
Our model is implemented using Torch7 framework [96]. For
the stage of motion-centric location candidate generation, we
test three kinds of optical-flow-based descriptors as well as
three kinds of CNN-based features.

o iDT [1]]: The size of the each volume in a video is n X n
pixels and L frames. The volume is subdivided into a
spatiotemporal grid of size n, X n, X n,. We use the
default parameters n = 32,L = 15,n, = 2,n, = 3.
Trajectory is constructed with the sampled points in the

10

# lteration time (atiention sequence time)

10 20 30 40 50

# lieration time (attention sequence time)

(a) Average recall rate (b) Average inspected locations

% mAP

threshold 0.2
threshold 0.3
threshold 0.4
threshold 0.5

10 20 30 40 50 10 20 30 40 50

# Iteration time (attention sequence time) # Iteration time (attention sequence time)

(¢) Cumulative reward (d) mAP

Fig. 7. Curves of different factors during the procedure of training our
attention model on the “Playing sport” subset of ActivitNet dataset. All
measurements gradually become stable as iteration increases.

volume using a dense optical flow field. iDT is repre-
sented with HOGHOF [97] along the dense trajectories
as recommended in [98]].

o HOG3D [43]: Each video clip is divided into n, X n, X n;
cells. The corresponding descriptor concatenates gradient
histograms of all cells and is then normalized. We use the
executable from the authors websiteﬂ and apply their rec-
ommended parametric settings for all feature detectors:
descriptor size A, (o) = Ay(o) = 80),A(1) = 67,
number of spatial and temporal cells n, = n, = 4,n;, =
3, and icosahedron as polyhedron type for quantizing
orientations.

o 3D-SIFT [44]: We use Harris detector to extract interest
points with the same volume size in video as iDT. The
sizes of cube and sub-cube for each point are 12x 12 x 12
and 2 x 2 x 2. The 3D-SIFT is formed by combining all
the unit cube histograms [44].

We also cover three CNN-based deep features: C3D [60], Deep
Two-Stream CNNs [10]] and Hidden Two-Stream CNNs [93]].
We choose the last feature maps before fully connected layers.
For each of the above six types, we collect 3,000 descriptors
for each video, resize them to 100-dimension and employ the
method in Section to obtain location candidates. The
rest of clustering implementation for clustering follows the
instructions of [86].

As for our attention model, we use the RNN-based model
from [29] as the basic architecture, adapting it to action
detection task in video. Specifically, we test four kinds of
LSTM networks (1, 3, 5, 7 layer) with 256 hidden units each.
The attention sequence number is experimented to pursue a
good number. The model receives C3D features [60] as visual
clues of local spatiotemporal region around the motion-centric
location candidates. Each C3D feature is generated at 2 frames
per second with temporal resolution of 16 frames, which is

Uhttp://lear.inrialpes.fr/software
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TABLE II
PERFORMANCE (%) COMPARISON USING DIFFERENT CLASSIFIERS ON
“PLAYING SPORTS” SUBSET OF ACTIVITYNET DATASET WITH IOU
THRESHOLD o = 0.5.

“Normal” | “L+R” | “Only-Pos” | SVM | “Joint”
High jump 13.26 13.59 17.26 18.67 7.44
Long jump 4.05 5.21 6.68 1.86 0.46
Cricket 19.20 19.10 16.07 13.63 9.40
Discus throw 1.22 6.65 5.98 1.11 8.99
Rollerblading 19.46 26.98 23.27 27.15 7.97
Powerbomb 33.51 48.79 45.59 6198 | 31.17
Javelin throw 3.03 6.71 6.45 7.08 5.04
Longboarding 28.44 25.80 21.69 31.03 15.04
Hurling 29.90 21.94 24.25 30.54 | 22.85
Shot put 2.06 2.40 0.44 1.38 1.32
Paintball 14.22 16.48 20.29 22.18 12.26
Bungee jump 4.83 8.74 4.27 6.08 0.34
Triple jump 7.50 4.04 4.70 7.70 2.08
Pole vault 11.73 7.23 6.46 4.69 2.43
Powerbocking 37.26 36.26 43.39 43.09 | 31.53
Croquet 23.72 23.76 27.24 25.64 15.11
Hammer throw 10.13 16.44 15.29 5.33 4.00
Skateboarding 21.61 17.00 18.26 20.59 2.37
Dodgeball 41.26 49.71 55.63 63.72 | 72.06
Doing moto 48.21 46.47 54.73 60.53 | 45.03
Starting camp 45.44 44.48 49.50 62.50 | 38.20
Archery 13.28 12.44 21.71 15.16 9.94
Camel ride 78.96 69.38 70.99 8425 | 51.74
Playing ball 23.30 37.15 34.94 39.58 | 22.29
Baton twirling 72.30 71.27 71.15 78.19 60.62
Curling 14.50 7.10 11.94 14.37 9.57

[ mAP [ 2394 [ 2481 ] 26.08 [ 2877 ] 18.82 |

further reduced into 500 dimension using PCA. The temporal
bound regressor is implemented with two fully connected
layers (256 — 100 — 100 — 2). Parameters of all networks
are initialized using uniform distribution between —0.1 and
0.1. During training phase, we use 20 videos as a mini-
batch in every training iteration and update parameters with
batch gradient descent approach. The learning rate is initially
set as 0.01, and decays by 0.0001 per 500 iterations. The
momentum is set 0.9. Since detections from different steps
may be duplicate, we apply the non-maximum suppression
[99] to eliminate redundancy at testing time.

C. Model Investigation

We first evaluate two experimental deployments and deter-
mine the best common settings for our model. Then we study
the impact of different configurations of attention model and
investigate the optimal choice. These experiments are con-
ducted on the “Playing sports” subset of ActivityNet dataset.
Afterwards, we report the performance of our best model
and compare with other competitive approaches on all three
datasets in both accuracy and speed.

Evaluation of motion-centric generator. Based on clus-
tering implementation of [86], We find the most important
factor for performance is the choice of optical-flow-based
descriptors. We test four types of popular local spatiotemporal
descriptors and list the performance comparison in Table [I|
Note that it uses our attention model with 1-layer LSTM
which iterates 15 times for each video. As Table [I] shows,
iDT performs better than the other three choices. Interesting-
ly, hand-crafted descriptors (HOG3D and 3D-SIFT) always

TABLE III
PERFORMANCE (%) COMPARISON USING DIFFERENT TRAINING MANNERS
ON “PLAYING SPORTS” SUBSET OF ACTIVITYNET DATASET WITH IOU
THRESHOLD o = 0.5.

U-single | U-ova | S-single | S-ova
High jump 7.44 7.55 19.62 13.99
Long jump 0.47 6.38 1.86 6.37
Cricket 4.43 12.15 12.67 15.26
Discus throw 4.53 11.23 1.11 10.08
Rollerblading 5.33 10.87 24.74 22.62
Powerbomb 25.19 48.81 61.98 61.05
Javelin throw 5.04 2.07 7.08 14.64
Longboarding 18.22 32.52 37.00 38.56
Hurling 15.19 28.11 30.54 24.16
Shot put 1.32 0.29 1.38 0.57
Paintball 11.30 18.75 22.18 29.03
Bungee jump 0.34 5.09 6.08 15.53
Triple jump 1.19 11.58 7.70 16.89
Pole vault 1.39 12.72 5.06 6.68
Powerbocking 31.53 47.40 43.09 44.48
Croquet 15.11 15.64 25.64 28.96
Hammer throw 0.50 9.75 5.33 14.21
Skateboarding 1.89 1291 20.59 20.45
Dodgeball 47.50 59.76 63.72 69.01
Doing moto 40.69 51.82 59.21 61.47
Starting camp 32.00 36.23 62.50 62.38
Archery 2.79 15.27 14.38 9.03
Camel ride 45.54 36.01 83.61 87.91
Playing ball 22.29 27.19 39.58 32.67
Baton twirling 53.58 77.03 77.64 75.19
Curling 4.94 0.58 14.37 16.08

[ mAP [ 1537 ] 2299 | 2879 [ 3043 ]

achieve better than deep learned features in our method. This
suggests that hand-crafted features are more suitable for pre-
processing tasks.

Evaluation of attention model structure. This part inves-
tigates the optimal RNN-based architecture for our attention
network, including the number of layer and the iteration time
of attention sequence for each video. As Fig. [ demonstrates,
the performance typically becomes weaker after around 20
locations for each video. Besides, a 5-layer LSTM structure
is shown to be the best choice for our attention model. We
can also conclude that further increasing the iteration time
contributes no improvement, which may be due to the limited
training data.

Analysis of attention procedure. We analysis the attention
procedure by watching a series of curves of selected key
factors with training steps in Fig. [7] In particular, Fig.
shows the average recall rate with increasing iterations. Fig.
depicts the average proposals which is processed during
the iteration. We can conclude that our model is able to
produce fairly short and effective search patterns with less than
10 locations inspected under various conditions. Fig. is
the curve of cumulative reward of our reinforcement learning
method. Fig. is the mAP changes with increasing training
iterations which shows our model can learn efficient detection
policy and finally converge to a stable result. In this figure,
we see that all these factors gradually becomes stable during
the training procedure.

Evaluation of classifier. As discussed in Section [l1I-D} we
have designed 4 types of classifier totally, including 3 types
of implementations of softmax classifier along with additional
SVM for each class. To evaluate the advantages of our separate
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TABLE IV
PER-CLASS PERFORMANCE (%) ON THUMOS-14, AT IOU OF a = 0.5 ON THUMOS’ 14 DATASET.

Class INRIA [100] | CUHK [3] 1751 Ours Class INRIA [100] CUHK [3] 1751 Ours

Baseball Pitch 8.6 16.4 14.6 | 19.6 Hamm. jump 34.7 29.3 28.9 | 43.2

Basket. Dunk 1.0 0.1 6.3 5.8 High Jump 17.6 9.7 333 | 371

Billiards 2.6 2.2 9.4 12.6 Javelin Throw 22.0 6.2 20.4 6.5

Clean and Jerk 13.3 9.4 42.8 | 35.1 Long Jump 47.6 20.0 39.0 | 258

Cliff Diving 17.7 6.3 15.6 | 24.7 Pole Vault 19.6 17.6 16.3 134

Cricket Bowl. 9.5 0.1 10.8 | 26.9 Shotput 11.9 2.0 16.6 | 19.7

Cricket Shot 2.6 0.4 35 7.0 Soccer Penalty 8.7 3.6 8.3 254

Diving 4.6 1.0 10.8 3.0 Tennis Swing 3.0 3.5 5.6 8.3

Frisbee Catch 1.2 0.2 104 | 20.5 Throw Discus 36.2 18.2 29.5 32.8

Golf Swing 22.6 23.2 13.8 31.3 Volley. Spike 1.4 2.3 5.2 13.6

[ mAP [ 14.4 [ 8.2 [ 17.1 ] 21.3 ] [ [ I [ |
TABLE V TABLE VI
ACTION DETECTION RESULTS (%) ON MPII COOKING DATASET. ACTION DETECTION RESULTS (%) ON THUMOS’ 14 WITH VARIED I0U
THRESHOLD «. ALL PERFORMANCES ARE REPORTED USING MAP.
Method 0.1 0.2 0.3 0.4 0.5

Sliding Window 222 | 197 | 158 | 126 | 7.9 Model 01 | 02 ] 03 | 04 | 05
Gemert ef al. [101]] | 22.2 | 19.7 | 158 | 12.6 | 13.1 Karaman et al. [4] 46 | 34 | 21 14109
Richard et al. [102] | 24.8 | 239 | 22.0 | 19.2 | 14.0 Sun et al. [104] 124 | 11.0 8.5 5.2 4.4
Zhu et al. [103] N - - - 14.9 Wang et al. [3] 186 | 17.0 | 140 | 11.7 8.3
Ours 322 | 297 | 25.8 | 20.6 | 185 Oneata et al. [100] 36.6 | 33.6 | 27.0 | 20.8 | 144
Heilbron et al. [105] | 36.1 | 32.9 | 25.7 182 | 13.5
Richard et al. [102] 39.7 | 36.7 | 30.0 | 23.2 15.2
Yeung et al. [75] 48.9 | 44.0 | 36.0 | 26.4 17.1
classifier over popular joint training manner, which is widely Zhu et al. [103] 477 | 436 | 362 | 289 | 19.0
used in attention-based model [74]] [75] [76l], we train the Shou et al. [106] 47.7 | 435 | 363 | 287 | 19.0
same SVM classifier with ours and it along with our attention Y;?lnefta‘;.l'[%%? gig’ gfg ii:g ggé ;g:g
model in a joint manner (denoted as “joint”). The performance Ours 474 | 459 | 39.4 | 33.0 | 265

comparisons are presented in Table [l As can be seen, using
an additional SVM is the best of all in terms of overall
mAP performance on 20 classes of the ActivityNet “Sports”
subset. Note that the right column is a naive implementation
which simply employs the output of RNN for classification as
original attention work [29].

Evaluation of training manner. We test two kinds of
strategies to train our model. The first one is using an end-
to-end manner, i.e. all the components are trained in a unified
procedure like [[75]] [74], denoted as “unified-single/one-vs-all”
which trains temporal bounding regressor and classifier simul-
taneously. Specifically, “unified-single” trains a single model
while “unified-one-vs-all” does for each class. On the other
hand, similarly, “separate-single/one-vs-all” trains temporal
regressor and classifier separately. In particular, “separate-
single” trains a single model for all classes while “separate-
one-vs-all” does for each class. The detailed comparisons are
shown in Table From the table we see a better mAP of
“separate-one-vs-all” by 5% at least, which is used in our
following experiments.

Given the investigations above, in the following comparison
part, we use iDT to generate location candidates. The attention
model is a 5-layer LSTM with 256 hidden units each and
trained with an additional SVM for each class in “Separate-
one-vs-all” manner.

D. Results and Comparison

MPII-Cooking. We compare our method to a sliding win-
dow baseline similar to [90] and [102]]. Table |V| shows our
method performs better than both the baseline and recent state-
of-the-art approaches [101] [102] [103]. An interesting work

is [102] where their novelty is that it includes a length and
language model in addition to an action classifier. However,
their runtime during inference is quadratic in the number of
frames. By limiting the maximal action length to a constant,
they can solve the action detection problem in a reasonable
time, but this not easily scalable to long videos. When we
compare our approach to [[101], we report their performance by
applying the implementation kindly provided by the authors.
[LO3]] develops a novel temporal actionness regression module
that estimates what proportion of a clip contains action. In
terms of mAP performance, our method outperforms all of
these methods by 7% at least.

THUMOS’14. Table shows the per-class performance
of our model on THUMOS’ 14 dataset using o = 0.5. Com-
parison approaches are two top submissions [100] [3]] on the
THUMOS’ 14 leaderboard and a recent attention-based method
[75]. Among all these four methods, our model outperforms on
14 out of 20 classes. Notably, it shows significant improvement
on some of the most challenging classes in the dataset such as
“Frisbee Catch” and “Hammer Throw”. The model’s ability to
reason holistically on action extents enables it to infer temporal
boundaries even when frame appearance is challenging: e.g.
similar pose and environment, or abrupt scene change.

Next we report mAP for all the classes using different IOU
thresholds, and compare with other approaches in Table
Most of these methods compute iDT and/or CNN features
over temporal windows, and use a sliding window approach
with non-maximum suppression to obtain predictions. This
means that visual clues of all the frames have to be computed.
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Fig. 8. Examples of predicted action instances on ActivityNet dataset. We select two long-range actions and test the performance of our method. Our model
can sometimes produce more than one prediction about the temporal bound of action which is common in complex, untrimmed videos.

The three models in top section of Table [VI use Fisher
vector encoded iDT features on video clips and perform
post-processing to refine the localization scores. [100] is the
winning approach of the THUMOS’14 challenge. It uses
video-level action classification scores as a context feature
which greatly improves the performance. The five methods
in middle section of Table [VI] are the most recent state-of-the-
art results. Note that and outperform our results
when o = 0.1 and 0.2. This is perhaps due to the fact that
their method concern more about fine-grained actions, since
many ground truth instances in this dataset can be matched
when « is small. We also see several recent works report
competitive or superior than our method in certain cases
[103] [106] [107]. However, our result is competitive in the
case of a = 0.5. A recent work [108] that uses a region-C3D
network performs best on this dataset.

ActivityNet. Table shows the action detection per-
formance comparison on ActivityNet under different IOU
thresholds «. The results of Heilbron et al. [93] are produced
on their test set, which is not publicly available; therefore,
their results are not directly comparable to ours. The middle
four methods are from a recent work [94]. The LSTM models
greatly outperform the CNN model. Their LSTM-s model
trained with both the classification loss and ranking loss on
the detection score. An alternative model called LSTM-m
is trained with classification loss and ranking loss on the
discriminative margin. Compared with their results, our model
performs better when « is large which means the task is more
difficult.

The following two results are submissions to ActivityNet
Challenge 2016. [109] conducts detection task with the help
of untrimmed classification. They generate the trimmed action
proposals by combining frame-level binary classification with
dynamic programming. Their results suggest that untrimmed
video classification models can be used as stepping stone for
temporal detection. [6] organizes videos with fixed 16-frame
clips and then individually extracts both audio and visual
features. Visual features were extracted from a pretrained C3D
network, while MFCC coefficients were extracted for audio.
Although using features of other media, their results are lower
than ours when a = 0.5. This indicates that our motion-centric
model is not sensitive to temporal IOU. Very recently, several
works including structured segment networks (SSN) [112],
semantic context cascade (SCC) [111]], and [110] provided
competitive results, where the best performance in terms of

o = 0.5 reaches 43.2. However, they did not provide other
results conditioned on various «.

E. Qualitative Analysis

In Fig. [§] we present a qualitative analysis of proposals
generated by our class-induced method. Note the ability of
our method to highly score proposals that are related with
a previously seen action. For example, all the five best
ranked proposals are related with one of the 20 classes on
THUMOS’ 14 dataset. As illustrated in the figure, our proposal
method is able to tightly localize the actions even that have
a distance in the time line. Additionally, our method can
often escape from unrelated region thanks to the motion-
centric generator which produces a compact subset of location
candidates in advance. Interestingly, we find an incomplete
high jump action ranked in the bottom. This is evidence that
our proposal method is able to discard low quality proposals.

Fig.P|presents a detailed procedure of model performs given
a video. Note that the input video shown in the figure spans
50 frames between consecutive shown frames. As can be seen,
the attention model can jump on competitive candidates and
finally achieve a reliable prediction which is colored in green.

F. Runtime Analysis

At last we report some runtime analysis of our method. We
measure the processing speed of our method during inference
and compare it with several recent competitive works. The
reported time is the average FPS (frame per second) needed
to generate the prediction for an average length video from
THUMOS’ 14 (3minutes). As Table [VIII] shows, when com-
paring against full-processing methods such as action local-
ization proposals from dense trajectories (APT) [101]], action
proposals from greedy search (APG) [[113]], binary proposal
classifier (BPC) [103], Sparse-prop [103], BoFrag [114] and
SCNN [106], we are able to obtain a speedup at least more
than 1.5 times. Note that there are two recent works faster than
our method. In particular, DAP incorporates a proposal
prediction step on top of LSTM and predicts at 134.1 FPS.
R-C3D constructs the proposal and classification pipeline in
an end-to-end fashion and these two stages share the features
making it significantly faster, achieving 569 FPS. This results
suggest that there is potential to further improve the speed of
method by integrating location candidate generation with the
attention model in an end-to-end manner.
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TABLE VII
ACTIVITY DETECTION PERFORMANCE (%) MEASURED IN MAP AT DIFFERENT IOU THRESHOLDS c.

IOU Threshold(«)

Method 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Heilbron et al. MF 13.8 12.6 13.2 14.0 13.3 - - -
Heilbron et al. DF 14.5 14.9 15.1 14.9 135 - - -
Heilbron et al. SF 16.2 17.0 17.2 16.6 14.3 - - -

Heilbron et al. MF+DF+SF 16.2 17.0 17.2 16.6 14.3 - - -
Ma et al. CNN 30.1 26.9 234 21.2 18.9 17.6 16.5 15.8
Ma et al. LSTM [94] 48.1 44.3 46.3 35.6 31.3 28.3 26.0 24.6

Ma et al. LSTM-m 52.6 48.9 45.1 40.1 35.1 31.8 29.1 27.2
Ma et al. LSTM-s 54.0 50.1 46.3 41.2 36.4 33.0 304 28.7
UPC Submission - - - - 22.5 - - -
Oxford Submission - - - - 28.7 - - -
Singh et al. - - - - 36.4 - - -
Caba et al. [111]) - - - - 39.9 - - -
Zhao et al. - - - - 43.2 - - -
Ours 46.3 43.8 42.7 41.3 38.0 36.0 34.6 314

Ground Truth |

Prediction I

Attention

Sequences

TR TR TR0

TTEE TR TRTTTTTTTITRITTIT]

Location

H NN § NNNN NEN NEN BN SN NN SN § DSN DO NEEN 6N DEEE EEE BN OEMN

Candidates

50-Frame
Distance

Fig. 9. An example of attention policy learning procedure on THUMOS’ 14 dataset. The generated location candidates and observed frames are colored in red.
Our model jumps back and forth on the candidates and gradually determine where an action has high probabilities to occur. The temporal bound prediction

is colored in green while the ground truth is colored in orange.

TABLE VIII
ACTION DETECTION SPEED DURING INFERENCE. WE REPORT THE
AVERAGE TIME NEEDED FOR AN AVERAGE LENGTH VIDEO FROM
THUMOS’ 14 (3MINUTES).

Method FPS Method FPS
APT [101] 0.68 S-CNN [106] 60
BoFrag [114] 1.88 DAP 134
Sparse-prop 10.2 Region-C3D 569
APG 15 Ours (5-layer, 15-times) 96

V. CONCLUSIONS

In this paper, we introduce a motion-centric attention model
for action detection in untrimmed videos. We show our model
is able to yield fast and accurate predictions of temporal bound
of action along with semantic label. Experiments on large-
scale benchmarks show the effectiveness of our method in both
accuracy and speed. Our potential future work is to integrate
other pre-processing techniques such as saliency detection for
attention model to produce more reliable predictions. Another
future direction is to use deep networks for location generation
to integrate the whole framework in an end-to-end manner.
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