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ABSTRACT

Spatial pyramid (SP) representation is an extension of bag-of-

feature model which embeds spatial layout information of lo-

cal features by pooling feature codes over pre-defined spatial

shapes. However, the uniform style of spatial pooling shapes

used in standard SP is an ad-hoc manner without theoreti-

cal motivation, thus lacking the generalization power to adapt

to different distribution of geometric properties across image

classes. In this paper, we propose a data-driven approach to

adaptively learn class-specific pooling shapes (CSPS). Specif-

ically, we first establish an over-complete set of spatial shapes

providing candidates with more flexible geometric patterns.

Then the optimal subset for each class is selected by training

a linear classifier with structured sparsity constraint and color

distribution cues. To further enhance the robust of our mod-

el, the representations over CSPS are compressed according

to the shape importance and finally fed to SVM with a multi-

shape matching kernel for classification task. Experimental

results on three challenging datasets (Caltech-256, Scene-15

and Indoor-67) demonstrate the effectiveness of the proposed

method on both object and scene images.

Index Terms— Image classification, class-specific pool-

ing shapes (CSPS), representation compression, multi-shape

matching kernel

1. INTRODUCTION

Bag-of-feature (BoF) model [1] is one of the most powerful

and popular framework for image classification. The standard

BoF model starts with handcrafted features such as SIFT [2]

extracted from either interesting points or densely sampled

patches. Such raw features are then either quantized or cod-

ed to obtain a dictionary. Finally the histogram of the fea-

ture codes over the whole image is regarded as a signature

to make classification. However, the spatial layout informa-

tion in this fashion is completely neglected. To overcome this

drawback, [3] pioneers the direction of exploiting spatial lay-

out property and proposes spatial pyramid (SP) to embed s-
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(a) 3-level SP (b) CSPS

Fig. 1. Comparison of standard SP and class-specific pooling

shapes (CSPS) learned by our method.

patial information of local features. In detail, it first partitions

an image into a fixed sequence of increasingly finer unifor-

m grids such as 1 × 1, 2 × 2, 4 × 4, and then concatenates

the BoF feature in each grid with a certain pooling scheme to

achieve the final representation. The SP-based representation

guides most approaches of image classification and benefits

many state-of-the-art systems [4–6].

However, one obvious limitation in standard SP is the u-

niform feature pooling style, which uses all the spatial shapes

and treats them equally, thus lacking the capability to capture

adaptive spatial information. For instance, an image belong-

ing to “meeting-room” class in Indoor-67 dataset [7] is coped

with an 3-level standard SP and the proposed class-specific

pooling shape (CSPS), as shown in Fig.1(a) and Fig.1(b), re-

spectively. It is obvious that the spatial pooling shapes learned

by CSPS separate the target and background properly, provid-

ing more reasonable and semantical spatial information. In

such cases which are common in natural images, the hand-

crafted and uniform pooling shapes in standard SP lack the

power of generalization across different classes.

In this paper, we propose a data-driven approach to adap-

tively learn class-specific pooling shapes (CSPS). Our idea is

motivated by the observation that images in the same class of-

ten share common spatial layout properties, i.e., background

and target tend to follow similar spatial distribution. In prac-

tice, we first adopt the concept of over-complete set and es-

tablish a set of spatial shapes providing as many candidates as

possible. This scheme helps us collect more flexible pattern-



s of spatial distribution. Instead of using pre-defined spatial

shapes in standard SP, we train a linear classifier with struc-

tured sparsity constraint and color distribution cues to select

optimal subset for each class. In particular, the sparsity term

encourages the classifier to extract small but essential subset

avoiding redundancy and the color term makes the selected

shapes more semantically reasonable following color distri-

bution inference. To limit the complexity, we compress the

representations over CSPS according to the shape importance

which are finally fed to SVM with a multi-shape matching

kernel for image classification task.

The remainder of the paper is organized as follows. Sec-

tion 2 reviews the related work of standard SP and its varia-

tions, and Section 3 proposes our image classification frame-

work with focus on the approach to adaptively learn class-

specific pooling shapes (CSPS). Experimental results with

analysis and comparison are presented in Section 4, and we

conclude the paper in Section 5.

2. RELATED WORK

Most approaches for image classification are built upon the

BoF model which regards an image as an order-less histogram

of features, where the spatial layout property is completely

discarded. To overcome this limitation, various extensions

have been proposed from the following two directions, i.e.,

the property of local spatial layout and global spatial layout.

Local spatial layout information mainly explores the rel-

ative positions or pairwise positions of the local features. [8]

uses the combination of correlograms and visual words to rep-

resent spatially neighboring image regions. In [9], an efficient

feature selection method based on boosting is introduced to

mine high-order spatial features. [10] learns relative features

by reference basis (RB) and proposes an adaptive pooling

technique to assemble the learned multiple relative features,

achieving good performance.

On the other hand, global spatial layout information lever-

ages the absolute positions in images, which is also our focus

in this paper. Based on the pioneer work [3] where the orig-

inal SP is proposed, [4] and [11] show that incorporating ad-

vanced feature coding strategies is able to improve the classi-

fication performance. Moreover, the combinations with super

vector [12] and fisher vector [13] are demonstrated effective

to obtain a good image representation.

More recently, several advanced image classification sys-

tems are based on SP, but involving different parameters in-

cluding the number of pyramid levels and the structure of the

grids at each level. For instance, [3] and [4] use up to 4 pyra-

mid levels with uniform grids of 1× 1, 2× 2, 4× 4 and 8× 8,

while the winner of Pascal VOC 2007 competition [14] fol-

lowed by many others such as [12] use three pyramid levels

with grids of 1 × 1, 2 × 2 and 3 × 1. However, these SP pa-

rameters are still chosen in an ad-hoc manner and few works

report systematic construction of the representation.

(a) (b)

Fig. 2. Toy example of pooling shapes by standard SP 2(a)

and the proposed over-complete spatial shape set 2(b) on a

4 × 4 grid. Standard SP yields 1 × 1 + 2 × 2 + 4 × 4 = 21
grids while ours can produce

(

4+1

2

)

×
(

4+1

2

)

= 100 candidates.

Although the extensions of standard SP are addressed a

lot, rather little attention has been paid to achieve spatial

pooling shapes in a learning procedure. In this paper, we

address this issue by a data-driven approach to adaptively

learn the optimal pooling shapes for each class of images.

The most related work to ours is [5] which also adopts the

idea of over-complete set and formulates the problem in a

multi-class fashion to learn discriminative spatial shapes for

the whole dataset. However, different classes often have d-

ifferent distribution of spatial properties, we thus attempt to

learn class-specific pooling shapes (CSPS). Moreover, we try

to leverage the color distribution information which is often

used for region of interest (ROI) detection and segmentation

in our learning procedure to select more semantically reason-

able pooling shapes following color cues.

3. APPROACH

In this section, we detail our image classification framework

with focus on learning class-specific pooling shapes (CSPS),

from establishing an over-complete spatial shape set, to learn-

ing CSPS with sparsity and color constraints. Image repre-

sentations over CSPS are then compressed and finally fed to

SVM classifier with a proposed multi-shape matching kernel.

3.1. Over-complete spatial shape set

We first establish an over-complete spatial shape set which

provides candidates with more spatial distribution styles. In-

stead of only using certain uniform squares in standard SP

as in Fig.2(a), we choose all the rectangular shapes involv-

ing as many geometric properties of the local features as pos-

sible. Let a and b represent the number of horizontal and

vertical lines to separate an image, we obtain totally R =
(

a+1

2

)

×
(

b+1

2

)

rectangles as in Fig.2(b) and the over-complete

spatial shape set is denoted as S = {s1, s2, . . . , sR}.

Note that the over-complete scheme makes it possible to

obtain more flexible shapes such as circles and polygons,

which can capture more adaptive and semantical geometric

properties for particular recognition task. For the simplicity

to compare with standard SP, we only apply the increasing



horizontal and vertical lines to form rectangular shapes in our

implementation.

3.2. Learning class-specific pooling shapes (CSPS)

Since S is over-complete with a lot of redundancy, we attempt

to select the optimal subset for each class due to the obser-

vation that images in the same class often share the common

spatial layout distribution. In other words, we want to achieve

SL = {S1,S2, . . . ,St} for the image set containing t classes

where Si denotes a certain subset of S for class i.
To this end, given a set of images I = {I1, I2, . . . , In}

we first extract local features and employ feature coding al-

gorithm to obtain a dictionary D = {d1, d2, . . . , dt}. Af-

terwards spatial pooling of feature codes is conducted on

each shape of S. By this way, the i-th image can be rep-

resented by concatenating the pooled feature codes as xi =
{xs1

i ,xs2
i , . . . ,xsR

i } and the image set can be represented as

X = {x1,x2, . . . ,xn}. Then a linear classifier is trained with

one-versus-all fashion to select optimal subset for each class,

leading to the following optimization problem

min
w,b

1

N

N
∑

n=1

L(wT
xn + b, yn) + λReg(w) (1)

where vector w and scalar b are the parameters to be esti-

mated, xn is the feature vector of the n-th sample, yn ∈
{−1,+1} is the label of the n-th sample indicating class i
and “rest-of-the-world”, L(wT

xn + b, yn) is a certain non-

negative convex loss function to punish a certain set of {w, b},

Reg(w) is a regularizer term and λ ∈ R is the regularization

coefficient. In practice, we choose the binomial negative log

likelihood as the loss function

L(wT
xn + b, yn) = ln(1 + exp(−yn(w

T
xn + b)) (2)

The regularization term in Eq.1 is expected to select the

subset for each class containing the most representative and

discriminative spatial shapes. Thus we employ two regular-

ization terms and Reg(w) can then be reformulated as

Reg(w) = Regs(w) + Regc(w) (3)

where Regs(w) and Regc(w) denote sparsity constraint term

and color distribution constraint term, respectively. These two

regularization terms are described in the following.

3.2.1. Color distribution cues

To leverage the color information as learning cues, we ap-

ply color segmentation to assign a certain color channel to

each pixel in advance. For fast implementation, we simply

employ k-means algorithm to cluster an image with k colors

by converting RGB color space to L∗a∗b space, denoted as

C = {c1, c2, . . . , ck}. Since the learned shapes are expected

(a) Raw images

(b) Learned shapes with color segmentation

Fig. 3. Examples of raw images and the corresponding CSPS

with color distribution cues on Indoor-67 dataset.

to capture dominant channels in color space, we define the

color regularization term in Eq.3 as

Regc(w) =

R
∑

i=1

max
j







(

N(c, i)

P(j)

)

N(c,i)
N(c)







, j = {1, 2, . . . , k}

(4)

where N(ci, j) denotes the number of the i-th color in sj ,

N(ci) is the pixel number of the i-th color, P (j) is the pix-

el number of sj . The base term indicates the proportion of

a color in each shape and the exponent term stands for the

proportion of that color in a specific channel. With this regu-

larization term, the classifier tends to select semantically rea-

sonable shapes following color distribution inference. Some

examples of learned shapes are shown in Fig.3.

3.2.2. Structured sparsity constraint

While a lot of significant efforts have been placed on the de-

sign of sparse regularizer such as squared Frobenius norm and

ℓ1,∞ norm [5], recent analysis [15] shows that the mixed norm

regularization under certain conditions enjoys the group spar-

sity property, encouraging the content-based structured fea-

ture selection in high-dimensional feature space. We adopt

the idea of structured sparsity in [15] and define the sparse

regularization term as a ℓ2/ℓ1 norm regularizer

Regs(w) = ‖w‖
2,1 =

R
∑

i=1

‖wsi‖2 (5)

where wi is the i-th group of parameters corresponding to

si. This regularizer motivates dimensions in the same group

to be jointly zero. Thus the optimization procedure tends to

select a much smaller but more discriminative subset. Beyond

the regular ℓ1 norm regularizer, the sparsity is now imposed

on spatial shape level rather than merely on feature level. To

solve the jointly learning with mixed norm regularizer, we

USE the primal-dual algorithm proposed in [16].



3.3. Fast learning

Although the over-complete scheme provides flexible spatial

shapes with more geometric patterns, jointly optimizing Eq.1

is a computationally challenging task due to its high dimen-

sional searching space. We employ a greedy approach pro-

posed in [5] by starting with an empty set of selected features

and incrementally adding features to the set. Specifically in

each iteration, for the feature i that has not been selected, we

compute the score of the ℓ2 norm of the gradient of Eq.1

score(i) =

∥

∥

∥

∥

∂L(w, b)

∂wi

∥

∥

∥

∥

2

Fro

(6)

We then select the feature with the largest score and add it

to the feature set. The selection procedure can be controlled

by a threshold to limit the size of feature set. In practice, we

follow the suggestion of [5] and set the active set size as 100.

3.4. Representation compression

Another issue we concern is the high dimensional representa-

tions which are even larger than that in standard SP. To over-

come this drawback, we compress the representations by only

remaining the feature dimensions corresponding to the impor-

tant shapes. To measure the importance of each shape, we

apply a leave-one-out scheme and the importance value of a

particular shape j is defined as the training error increase after

neglecting the shape dimensions

Ij =
Errorj − Error0

Error0
(7)

where Error0 denotes the training error over all the training

data. The largest Ij indicates that the neglected dimensions of

the j-th shape are more important and discriminative. Beyond

the target of representation compression, Ij can be also used

in our multi-shape matching kernel as a weight term.

3.5. Multi-shape matching kernel

By now we have learned the CSPS for each class. We then

turn to employ SVMs to make classification. Notice that s-

tandard SP treats each pooling shape equally in the matching

kernel where the difference of each spatial shape is neglect-

ed. We attempt to weight the shapes due to the fact that the

important region should be paid more attention. Specifical-

ly, we use the shape importance value I in Eq.7 as a weight

to indicate the importance of different shapes and define the

multi-shape matching kernel as the weighted sum of the sep-

arate shape kernels

K(x1,x2) =

R
∑

m=1

Im ·K(xsm
1 ,xsm

2 ) (8)

where the kernel K can be any kernel function. With this

multi-shape matching kernel, a one-versus-others classifier is

prepared for classification task.
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(a) Caltech-256
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Fig. 4. Performance with different grid styles of our method

on Caltech-256 dataset (60-train) and Indoor-67 dataset.
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Fig. 5. Performance on Caltech-256 dataset (60-train) with

varying tradeoff λ and color term Regc(w) in Eq.1.

4. EXPERIMENTS AND RESULTS

In this section, we report the experimental results on three

diverse datasets (Caltech-256, Scene-15 and Indoor-67). We

compare our method (CSPS) mainly with KSPM [3] which is

standard SP, its popular extensions ScSPM [4] and LCC [11],

some related works exploiting spatial pooling shapes [5,6,17]

and other relevant approaches [7, 18–25].

4.1. Experiment setup

Although several coding and pooling strategies can be used,

we employ sparse coding and max pooling following the in-

structions of [4] for fair comparison. We use a single SIFT

descriptor, by densely extracting local patches of 16×16 pix-

els computed over a grid with spacing of 8 pixels. For all

the experiments, we fix the codebook size as 1, 024. The col-

or cluster parameter k in Eq.4 is set 5. We apply χ2 kernel

for the kernel K in Eq.8. The trade-off parameters to the s-

parsity regularization term and the SVM regularization term

are chosen via 5-fold cross validation on the training data.

Other parameter settings are detailed in Sec.4.2. Following

the common benchmarking procedures, we repeat the exper-

imental process by 5 times with different randomly selected

training and testing images to obtain reliable results.

4.2. Analysis

We provide analysis of our method with focus on the initial-

ization of S, the tradeoff parameter λ of the regularization



terms in Eq.1, and the effectiveness of the color regularizer

Regc(w) in Eq.3. Recall that given an a× b grid over an im-

age, the proposed S can yield R =
(

a+1

2

)

×
(

b+1

2

)

candidates.

Although the finer grid setting provides more spatial pattern-

s, spatial shapes produced by too fine grids fail to capture

object-oriented information. Experiments on Caltech-256 and

Indoor-67 dataset indicate that 5×5 grid style which produces

225 rectangle shapes consistently achieves the best perfor-

mance as shown in Fig.4(a) and 4(b). On the other hand, the

free parameterλ in Eq.1 designed to control sparsity and color

distribution of the solution is needed to determine. We con-

duct the corresponding experiment on Caltech-256 dataset.

As shown in Fig.5, a typical curve demonstrates that the best

performance is obtained by λ = 4.5. To validate the effect

of color regularizer Regc(w), we test without Regc(w) and

the performance lowers about average 2.3% (Fig.5), which

indicates that color distribution cues provides complementary

information to our model.

4.3. Results

4.3.1. Results on Caltech-256 dataset

Caltech-256 dataset [23] consists of images from 256 object

classes containing images from 80 to 827 per class. The sig-

nificance of this dataset is its large inter-class variability, as

well as intra-class variability. The performance comparison

results are shown in Fig.6. ScSPM [4] and LCC [11] are two

popular extensions of standard SP which employ advanced

feature coding strategy, while [19] and [18] are two published

leading approaches on this dataset. It is indicated that our

method consistently leads the performance and outperforms

state-of-the-art by more than 3% averagely. However, the im-

provement of our method is limited when training number is

45, which is worthy to be noticed.
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Fig. 6. Performance comparison with different training num-

ber on Caltech-256 dataset.

4.3.2. Results on Scene-15 dataset

We further evaluate the performance of our approach for

scene images. Scene-15 is a popular scene dataset consisting

of 15 natural scene categories, e.g., “building, “bedroom, with

Table 1. Classification accuracy (%) on Scene-15 dataset.

Class ScSPM [4] SP+RSC [20] CSPS (Ours) CSPS+RSC

Bedroom 67.24 ± 5.57 84.21 ± 2.54 88.35 ± 1.03 92.21 ± 2.14

CALsuburb 85.29 ± 1.42 89.55 ± 1.23 89.79 ± 0.95 93.55 ± 1.32

Industrial 56.40 ± 2.00 57.34 ± 3.07 76.25 ± 2.67 79.24 ± 1.07

Kitchen 66.36 ± 3.44 69.83 ± 3.78 76.55 ± 2.54 82.83 ± 1.55

Livingroom 62.43 ± 2.92 65.69 ± 2.38 78.02 ± 2.55 83.69 ± 2.38

Coast 90.53 ± 1.51 93.03 ± 1.47 92.15 ± 0.61 90.03 ± 1.31

Forest 84.85 ± 0.91 97.67 ± 1.55 89.12 ± 1.30 91.67 ± 1.87

Highway 86.25 ± 2.67 88.85 ± 2.18 90.12 ± 1.34 88.85 ± 2.18

Insidecity 88.94 ± 1.16 89.50 ± 1.10 92.04 ± 1.43 94.50 ± 1.10

Mountain 84.67 ± 2.70 85.67 ± 2.35 87.50 ± 2.96 87.61 ± 2.05

Opencountry 74.19 ± 3.33 83.37 ± 0.50 86.03 ± 1.55 89.37 ± 0.72

Street 84.63 ± 2.29 93.91 ± 2.07 92.79 ± 3.13 95.91 ± 1.31

Tallbuilding 93.57 ± 0.35 98.52 ± 0.28 94.05 ± 0.33 96.52 ± 0.28

PARoffice 86.96 ± 2.25 86.45 ± 1.29 87.83 ± 2.84 88.45 ± 1.29

Store 69.77 ± 2.70 72.47 ± 1.96 84.53 ± 2.50 83.32 ± 1.05

Table 2. Classification accuracy (%) on Indoor-67 dataset.
ROI GIST [7] 26.5

SP + HOG [24] 29.8

SP + SIFT [24] 34.4

Scene DPM [17] 30.4

MM Scene [21] 28.0

Centrist [25] 36.9

Object Bank [22] 37.6

CSPS (Ours) 47.6

total 4, 485 images. We follow the setup in [6] that randomly

selects 100 images from each class for training and the rest of

the images for testing. Table 1 shows the detailed comparison

for each class. We notice that SP + RSC [20] achieves bet-

ter results in some classes than ours, which is perhaps due to

the discriminative power of their feature codes on this dataset.

By incorporating robust sparse coding (RSC), our method can

further obtain about 2% improvement.

4.3.3. Results on Indoor-67 dataset

Indoor scene dataset [7] is another scene dataset characterized

by 67 indoor classes with high intra-class variations. We use

the same training and test split as in [17] where each class

has 80 training and 20 test images. Fig.7 shows some exam-

ples of the learned CSPS for a few classes. As can be seen,

the proposed method is able to learn adaptive spatial infor-

mation. Instead of using popular scene-specific features such

as GIST in this dataset, we only use single SIFT features to

demonstrate the effectiveness of CSPS. The detailed compar-

ison results are listed in Table 2 which shows that our method

outperforms the SP-based approaches [7, 17] and other rele-

vant works [21, 22, 25], yielding 47.6% performance which,

to our knowledge, is the best on this dataset.

Note that [17, 25] report there is an improvement space

by adding some scene-specific features on this dataset, which

indicates that our method has the potential to be further im-

proved when combining other features such as GIST and

GIST-color [17] on this dataset.



(a) Bookstore (b) Gym (c) Tv-studio (d) Dining-room

Fig. 7. A few samples of class-specific pooling shapes (CSP-

S) learned by our method on Indoor-67 dataset.

5. CONCLUSION

In this paper, we propose a data-driven approach to adap-

tively learn class-specific pooling shapes (CSPS) for image

classification. Different from standard SP using uniform s-

patial pooling shapes, our CSPS provides adaptive and se-

mantical spatial patterns for feature pooling, which is able to

capture more class-specific information. Our method outper-

forms standard SP and other methods on three diverse datasets

(Caltech-256, Scene-15 and Indoor-67), the experimental re-

sults have shown its effect to capture valuable spatial infor-

mation for both object and scene images.
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