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ABSTRACT

This paper proposes to employ deep learning model to encode

local descriptors for image classification. Previous works us-

ing deep architectures to obtain higher representations are of-

ten operated from pixel level, which lack the power to be gen-

eralized to large-size and complex images due to computa-

tional burdens and internal essence capture. Our method slips

the leash of this limitation by starting from local descriptors

to leverage more semantical inputs. We investigate to use two

layers of Restricted Boltzmann Machines (RBMs) to encode

different local descriptors with a novel group sparse learning

(GSL) inspired by the recent success of sparse coding. Be-

sides, unlike the most existing pure unsupervised feature cod-

ing strategies, we use another RBM corresponding to seman-

tic labels to perform supervised fine-tuning which makes our

model more suitable for classification task. Experimental re-

sults on Caltech-256 and Indoor-67 datasets demonstrate the

effectiveness of our method.

Index Terms— Image Classification, Feature Coding,

Restricted Boltzmann Machine (RBM), Group Sparse Learn-

ing (GSL)

1. INTRODUCTION

Bag-of-Feature (BoF) model is one of the most powerful and

popular frameworks for image classification which represents

image as a histogram of visual words. Standard BoF-based

framework is mainly composed of four steps: feature extrac-

tion, feature coding, spatial pooling and SVM classification.

This pipeline is almost fixed in recent literatures except for the

“feature coding” part. To this end, many elegant algorithm-

s have been designed to improve the discriminative power of

the learned codes [1–4] among which deep learning based ap-

proaches draw a lot of attention due to its representational

power of deep transformation compared with other dictionary

learning methods in a single step [5–7].

A typical deep learning method for feature coding is to

stack layers of Restricted Boltzmann Machines (RBMs) to
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learn a hierarchical architecture such as [8, 9]. Each layer

is regarded as an encoder-decoder functional module. At the

bottom of the architecture, pixels of images are used as input

with non-linear computations to obtain a slight higher repre-

sentation, after several layers of transformation, the output of

the top layer can be viewed as a higher representation. Al-

though this architecture is often employed as an expert of

feature learner, one major limitation is that pixel-level-start

scheme contributes less semantical information, thus more

layers are needed to construct to bridge the semantic gap,

which amplifies the problems such as computational burdens

and training errors.

In this paper, we propose to leverage local descriptors as

the input of deep architecture, using two layers of RBMs to

encode these descriptors. Since the output of the first RBM

can be viewed as the learned codes in one layer and the code-

book for the whole model, we introduce an approach to con-

straint the hidden units with group sparse property to limit the

size of codebook. To make the learned codes more suitable

for classification task, we use another RBM corresponding to

semantic labels to perform supervised fine-tuning. With the

combination of BoF model and spatial pyramid pooling, we

explore to use the learned representations for image classifi-

cation.

The remainder of this paper is organized as follows. Sec-

tion 2 reviews the related work, and Section 3 details our ap-

proach with focus on employing RBMs to encode local de-

scriptors with group sparse learning (GSL). Experimental re-

sults with analysis and comparison are presented in Section 4,

and we conclude the paper in Section 5.

2. RELATED WORK

Feature coding has been studied extensively in recent years

and readers can refer to [10] for good surveys. Here, we only

cover typical deep learning based methods.

Deep learning is a family of learning methods that can

provide good representation of data by a multiple-layered

structure, where each layer represents different degree of

abstraction of data features. Currently it is often used as a
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powerful model to transform images pixels to obtain higher

representations for classification task, such as convolutional

neural networks (CNNs) [4] and deep belief networks (DB-

Ns) [11]. More recently, convolutional deep neural networks

(CDNNs) have emerged as a powerful model in large-scale

dataset [12]. Despite the powerful representations, these

methods needed more layers to construct their models which

burden the training procedure on both computation and stor-

age.

Our method is based on RBM which has been stacked to

form hierarchical representations from pixels [13] with selec-

tivity [8] as the prior to train each layer. However, most pre-

vious RBM-based approaches are operated from pixel level.

We attempt to leverage local descriptors as the input motivat-

ed by the observation that pixel-start transformation fall short

of performing image classification within the BoF model. The

most recent to ours is [9] which learns Gaussian RBMs from

SIFT rather than pixels, but the overall architecture remains

relatively heavy. With group sparse constraints on the hidden

units of RBM, we exploit to achieve compact and powerful

feature codes with only two layers of RBM.

3. METHOD

In this section, we first briefly review RBM along with its

training scheme, and then detail our approach with focus on

using RBMs to encode local descriptors with group sparse

learning (GSL). The proposed framework is shown in Fig.1.

3.1. Restricted Boltzmann Machine

The Restricted Boltzmann Machine (RBM) is a two-layer bi-

partite structured neural network. The first set of units is de-

fined as the visible layer to represent the observation and the

second layer is called the hidden layer which functions as the

feature detector. For any given configuration, a uniform ener-

gy function is defined as

E(v, h) = −
∑

i,j

vihjwij −
∑

i

bivi −
∑

j

cjhj (1)

where vi, hj denote the states of the ith visible and the jth
hidden units, wij represents the weight between them, b and

c denote the offsets of the visible and hidden layers. The joint

probability distribution is defined as

P (v, h) =
exp(−E(v, h))

Z
(2)

where Z =
∑

v,h exp(−E(v, h)) is the Boltzmann partition

function. By summing over all the possible hidden units, the

marginal distribution over the visible units is generated as

P (v) =
1

Z

∑

h

exp(−E(v, h)) (3)

A probabilistic version of the neuron activation function

for inference can be expressed as

P (vi|h) = σ(bi + wi.h)

P (hj |v) = σ(ci +w.jv)
(4)

Fig. 1. The proposed framework using RBMs to encode local

descriptors for image classification.

The derivative of the log probability of a training data re-

garding the weights can be formulated as

∂ logP (v)

∂wij

= 〈vihj〉data − 〈vihj〉model (5)

where 〈·〉 is the expectation with respect to the subscript spec-

ified distribution and the second term is often approximated

by contrastive divergenece (CD) algorithm [11]. The weight

update rule can then be described as

△wij = ǫ(〈vihj〉data −
〈

v
neg
i hj

〉

recon
) (6)

where ǫ is the learning rate and v
neg
i is sampled from Eq.4.

Specifically, given a set of training data {v(1), v(2), · · · , v(N)},

weight update function can be written as

△wij = ǫ
(

P (hj |v
(n)
i )v

(n)
i − P (hj |v

(n)neg
i )v

(n)neg
i

)

(7)

The corresponding updating rules for both visible layer

and hidden layer offsets are

bi = bi + ǫ(〈bi〉data −
〈

b
neg
i

〉

)

ci = ci + ǫ(〈vi〉data −
〈

v
neg
i

〉

)
(8)

The behaviour of RBM can be explained as adjusting the

weights and offsets to lower the energy on training data [14].

3.2. Using RBMs to Encode Local Descriptors

To use RBM to encode local descriptors, the visible layer is

set to contain N units corresponding to the dimensionality

of local descriptor such as 128 for SIFT. The coding layer

has J latent units, each representing a visual codeword. The

two layers are connected via undirected weights W ∈ R
N×J

which is regarded as visual codebook.

Once a layer is trained the parameters W, b, c are frozen

and the hidden unit values are inferred. These inferred values

serve as the “data” used to train the next higher layer in the

network. Note that there is a balance that every RBM-based

architecture must trade off, that is, the depth of model and the

difficulty of training. Previous works starting from pixels of-

ten employ three layers or more to learn feature codes. But
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in our approach, local descriptors are used as the input and

the dimension is smaller which help us obtain powerful fea-

ture codes with fewer layers. So in our implementation, we

greedily stack one additional RBM. Note that the third RBM

in Fig.1 used for supervised fine-tuning is not regarded as a

feature learner.

3.3. Group Sparse Learning

Given {v1,v2, ...,vN} representing N local descriptors, the

RBM facilitates H hidden units indexed by j where j =
{1, 2, ..., H}. Following the inspiration of group sparse cod-

ing [15], we propose to split the hidden units into a sparse

group and a redundancy group which consist of s and r hid-

den units respectively. The objective function is then drawn

by the following optimization problem:

min
w







−
N
∑

n=1

logP (v(n)) + λ1

s
∑

j=1

∣

∣

∣
α−

1

N

N
∑

n=1

P (hj
(n)
∣

∣v(n))
∣

∣

∣

2

+ λ2

H
∑

j=

∣

∣

∣
α−

1

N

N
∑

n=1

P (hj
(n)
∣

∣v(n))
∣

∣

∣

2







(9)

where λ1 and λ2 are two regularization coefficients. α and

β control the sparseness of the responding hidden units. In

practice, we set α a small value to generate the sparse property

and β a value close to 1 to keep the hidden units constantly

active [8]. If we focus on the sparse regularization term in

Eq.9, and compute the gradient for updating the weights given

the training data v(n), we can get the learning factor ξs as:

ξs =
∂

∂w.j







s
∑

j=1

∣

∣

∣
α−

1

N

N
∑

n=1

P (hj
(n)
∣

∣v(n))
∣

∣

∣

2







=
s
∑

j=1

(

2

N

∣

∣

∣

1

N

N
∑

n=1

P (hj
(n)
∣

∣v(n))− α
∣

∣

∣
·

N
∑

n=1

P (hj
(n)
∣

∣v(n))P (hj
(n) = 0

∣

∣v(n))v(n)

)

(10)

Similarly, the learning factor ξr for the redundancy part is:

ξr =
H
∑

j=s+1

(

2

N

∣

∣

∣

1

N

N
∑

n=1

P (hj
(n)
∣

∣v(n))− β
∣

∣

∣
·

N
∑

n=1

P (hj
(n)
∣

∣v(n))P (hj
(n) = 0

∣

∣v(n))v(n)

)

(11)

The regularization terms penalize the selected sparse u-

nits and controlled redundancy units until the average active

probabilities from these units reaches the controlled value α,

β respectively. The learning factors ξs and ξr are updated it-

eratively to alleviate the growing tendency of the norm gradi-

ent. Algorithm 1 gives an overall description of the proposed

group sparse learning (GSL) procedure.

3.4. Supervised Fine-tuning

To conduct supervised fine-tuning, we employ a new classifier

RBM connecting the output of the second RBM to an output

Input: Random initialization of the weights and offsets W, b, c;

Initialization of learning rate ǫ.

Output: Learned W, b, c

1 for t = 1 to EpochsNumber do

2 for n = 1 to SampleNumber do

3 Positive phase;

4 Compute PosHidProb using Eq.4;

5 Compute positive hidden units states;

6 Negative phase;

7 Reconstruct vneg using Eq.3;

8 Compute NegHidProb using Eq.4;

9 Update W by Eq.6 with learning factor ξs, ξr;

10 Update b by Eq.7;

11 end

12 Update c by Eq.8;

13 end

14 return W, b, c;

Algorithm 1: Group Sparse Learning (GSL)

layer y ∈ R
C , with each unit corresponding to a class label c.

This RBM is trained by directly associating the output of the

second RBM to target outputs y

△wij = ǫ(〈h⋆
i yc〉data − 〈h⋆

i yc〉recon) (12)

where h⋆
i is the hidden units of the second RBM. All the lay-

ers are bound together using top-down sampled signals as tar-

gets for bottom-up activations [16]. This technique help us

update all RBMs in the architecture concurrently. We use the

discriminative softmax cross-entropy loss to penalize feature-

based classification errors, which are backpropagated through

the parameters consisting of two layers of visual dictionaries

and one layer of feature-level classifier.

3.5. Spatial pyramid and linear SVM

By now we have learned feature codes with three RBMs. We

then turn to embed them into a standard BoF model with spa-

tial pyramid (SP) to integrate geometric information. We use

three level SP with max pooling strategy to generate a vec-

torial signature for each image. Multi-class linear SVMs are

trained with one-against-all strategy for image classification

following the instructions in [2].

4. EXPERIMENTS

4.1. Dataset and Setup

In this section, we report the experimental results on Caltech-

256 [17] and Indoor-67 [18] dataset. We compare our method

mainly with some popular feature coding schemes [2, 9, 19–

21], RBM-based approaches [9, 22, 23] and other advanced

works [18, 24–31]. For each dataset, we follow the corre-

sponding common experimental settings as in [2, 31].

Our implementation has investigated three types of local

descriptors, i.e., SIFT [32], HoG [33] and LBP [34], as the

input of our model. Local descriptors are densely extracted

914



from 16 × 16 pixel patch on a grid with a step size of 8 pix-

els. A set of 200, 000 randomly selected descriptors are used

to train our model. A three-level spatial pyramid is employed

using max pooling grids of 4× 4, 2× 2 and 1× 1 to form the

final image representation. The trade-off parameters of SVM

regularization term are chosen via 5-fold cross validation on

the training data. Following the common benchmarking pro-

cedures, we repeat the experimental process by 10 times with

different random selected training and testing images to ob-

tain reliable results.

4.2. Results

4.2.1. Caltech-256

Caltech-256 dataset [17] consists of images from 256 object

classes containing images from 80 to 827 per class. Fig.2

shows detailed performance comparison with 15, 30, 45 and

60 training images. The compared methods include popular

feature coding strategies and a recent RBM-based approach

[9] which uses Gaussian RBM from SIFT. As can be seen,

our method consistently lead the performance in four types

of train number with an average about 4% compared with the

best [24] of others on this dataset which validates the power

of the learned feature codes with our method.

 25
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 35
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 60

KF[23]

ScSPM
[2]

Kulkarni[22]
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O
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45tr.
60tr.

Fig. 2. Performance comparison with other approaches using

different training number on Caltech-256 dataset.

4.2.2. Indoor-67

Indoor scene dataset [18] is a scene dataset characterized by

67 indoor classes with high intra-class variations. The aver-

age classification rates on Indoor-67 dataset are listed in Ta-

ble 1. As can be seen from the table, the proposed approach

yields a satisfactory performance, especially when compared

with the previous methods without deep learning model. Note

that two CNN-based models [22, 23] achieve competitive re-

sults using CNN starting from raw pixels to learn mid-level

feature. However, we still perform better about 3%.

4.3. Analysis and discussion

We first investigated the influence of several input local de-

scriptors (SIFT, HoG and LBP). The performance compar-

Table 1. Average classification rate (%) on Indoor-67 dataset.
SP + HOG [27] 29.8

SP + SIFT [27] 34.4

ROI GIST [18] 26.5

Object Bank [30] 37.6

Scene DPM [31] 43.1

Places-CNN [22] 68.2

CNNaug-SVM [23] 69.0

Ours 71.2

Table 2. Performance using Different Local Decriptors

Descriptor
Caltech-256 MIT Scene-67

15tr. 30tr. 45tr. 60tr. 80tr.

SIFT [32] 44.5 51.2 53.4 58.2 71.2

HOG [33] 46.1 45.3 46.5 47.8 62.6

LBP [34] 37.9 41.2 46.2 44.5 59.5

ison is shown in Table 2. It can be concluded that among

these three descriptors, SIFT achieves better performance in

most situations except with 15 training images on Caltech-

256 dataset. We also explore the influence of different size

of the codebook. A larger codebook has more capacity to

capture the diversity in the features, but it is also more likely

to exhibit codeword redundancy. In our experiments, 1, 024
codewords appear to give a good balance between diversity

and conciseness as Fig.3 indicates. Finally, we test the influ-

ence of the supervised fine-tuning. The results with or with-

out the third RBM in Fig.1 is shown in Fig.3. The comparison

indicates that the supervised fine-tuning procedure is able to

improve the power of our model.
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Fig. 3. Performance comparison with different size of code-

book on Caltech-256 and Indoor-67 datasets

5. CONCLUSION

In this paper, we propose to use two layers of RBMs to encode

local descriptors for image classification. We introduce a nov-

el group sparse learning (GSL) procedure for RBM training

to control the size of the learned codebook. Another RBM

corresponding to semantic labels is employed for supervised

fine-tuning which makes our model more suitable for clas-

sification task. Experimental results on challenging datasets

Caltech-256 and Indoor-67 have shown that our model out-

perform most of the existing methods.
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