
Video Imagination from a Single Image with Transformation
Generation

Baoyang Chen, Wenmin Wang, Jinzhuo Wang, Xiongtao Chen
School of Electronics and Computer Engineering, Peking University

ABSTRACT
In this work, we focus on a challenging task: synthesizing multiple
imaginary videos given a single image. Major problems come from
high dimensionality of pixel space and the ambiguity of potential
motions. To overcome those problems, we propose a new frame-
work that produce imaginary videos by transformation generation.
�e generated transformations are applied to the original image in a
novel volumetric merge network to reconstruct frames in imaginary
video. �rough sampling di�erent latent variables, our method can
output di�erent imaginary video samples. �e framework is trained
in an adversarial way with unsupervised learning. For evaluation,
we propose a new assessment metric RIQA. In experiments, we
test on 3 datasets varying from synthetic data to natural scene.
Our framework achieves promising performance in image quality
assessment. �e visual inspection indicates that it can successfully
generate diverse �ve-frame videos in acceptable perceptual quality.

KEYWORDS
Transformation Generation, Generative Models, Adversarial Train-
ing, Video Synthesis

1 INTRODUCTION
Given an static image, humans can think of various scenes of what
will happen next using their imagination. For example, considering
the ballerina in Figure 1, one can easily picture the scene of the
dancer jumping higher or landing so�ly. In this work, we clarify
the task as intimating human capability of Video Imagination:
synthesizing imaginary videos from single static image. �is re-
quires synthesized videos to be diverse and plausible. Although this
study is still in its infancy, we believe video prediction and image
reconstruction area can draw inspiration from it.

Compared to related tasks, e.g. video anticipation and prediction,
there are more challenges for video imagination . Video imagination
means to produce real high-dimension pixel values unlike low-
dimension vectors in semantic anticipation. In addition, videos that
are not identity to each other can all be reasonable, like imaginary
video 1 and imaginary video 2 in Figure 1. So there is no precise
ground truth as in common video prediction task. �is intrinsic
ambiguity makes regular criterion like MSE fails in evaluating
whether the synthesized video is plausible. Moreover, compared to
image generation, video synthesis needs to additionally model the
temporal dependency that makes consecutive frames seem realistic.

Figure 1: Synthesizing multiple imaginary videos from one
single image. For instance, given an image of a dancing balle-
rina, the videos of the dancer jumping higher or landing so�ly are
both plausible imaginary videos. �ose videos can be synthesized
through applying a sequence of transformations to the original
image.

Pioneers make a�empts. Dense trajectory [34] and optical �ow
[22] have been used to model scene dynamics. Variational auto-
encoder [34] and stochastic Markov-chain [24] have been intro-
duced to form generative model. However, those models still strug-
gle in high dimension space where manifold is hardly tractable, and
is unsatisfying in terms of criterion

In this work, we present an end-to-end unsupervised framework
with transformation generation for video imagination . Our key
intuition is that we can model in transformation space instead
of pixel space. Since scenes in frames are usually consistent, we
assume that the major motions between frames can be modeled
by transformations. If we reconstruct frame based on the original
image and corresponding transformations, both scene dynamic and
invariant appearance can be preserved well. In addition, we draw
inspiration from image generation works [23] that use adversarial
training. We believe an elaborate critic network that understands
both spatial and temporal dependency would serve as reasonable
criterion.

Based on the intuition and inspiration above, we design our
framework focusing on model distributions in transformation space
implicitly, and train it in adversarial way. In this framework, we
generate transformation conditioned on the given image. �en we
reconstruct each frame by applying the generated transformation
to the given image. Latent variable is also introduced to enable

ar
X

iv
:1

70
6.

04
12

4v
2 

 [
cs

.C
V

] 
 1

5 
Ju

n 
20

17



ACM Conference, July 2017, Washington, DC, USA Baoyang Chen, Wenmin Wang, Jinzhuo Wang, Xiongtao Chen

diverse sampling. Casting this into an adversarial architecture, we
train our framework in a fully end-to-end fashion.

We believe this framework is a promising way to overcome
existing challenges. As we build generation model in transforma-
tion space, it is more tractable to implicitly model the distribution
of transformation. Conditioned on image makes generated trans-
formation reasonable. �e procedure of applying transformation
to original image is similar to the insight of highway connection
[10], and this helps the synthesized video maintaining sharp and
clear. Also, the latent variable enables diverse imagination through
sampling di�erent transformations corresponding to di�erent imag-
inary videos. Furthermore, there is nearly in�nite resource for this
unsupervised training. No label is needed, so every video clip can
serve as a training sample.

For evaluation, since there is no general evaluation metrics for
this task, we employ image quality assessment method to evaluate
the quality of reconstructed frames and present a relative image
quality assessment (RIQA) to eliminate the scene di�erence. In
experiments, we evaluate our idea on three datasets, including two
arti�cial video datasets with simple motions and one natural scene
video dataset with complex motions. �e synthesized 4-frames
video results show that our framework can produce diverse sharp
videos with plausible motions. We compare our framework with
some related methods and two custom baselines. �e quantita-
tive evaluation results suggest that our framework outperforms
others including those methods that are given more prior informa-
tion, and the qualitative comparison also shows the advance of our
synthesized videos.

�e primary contribution of this paper is developing a new end-
to-end unsupervised framework to synthesize imaginary videos
from single image. We also make brave a�empt on new evaluation
method. In section 2, we review related work. In section 3, we
present our Video Imagination video synthesis framework in details.
In section 4, we illustrate new evaluation method RIQA and show
experiments and comparison.

2 RELATEDWORK
Although the works of future video synthesis from single image are
rather li�le, our task shares common techniques with two related
tasks: video prediction [27] and image reconstruction [32], where
researchers have made impressive progress. In the following, we
regard them as a universal visual prediction task, and review related
works from di�erent perspectives of approaches.

Reconstruction in pixel space. Early works of visual predic-
tion focus on modeling and estimation in pixel space [38] [28] [37].
�ese methods reconstruct images by calculating pixel values di-
rectly. With recent resurgence of deep networks, researchers tend
to replace standard machine learning models with deep networks.
In particular, [14] proposes a video pixel network and estimates
the discrete joint distribution of the raw pixel values. [26] uses
LSTM network to learn representations of video and predict future
frames from it. [33] employs adversarial training and generates
video from scratch with deconvolution method [43]. A key issue in
pixel-level prediction is the criterion metrics. A recent work [20]
argues that standard mean squared error (MSE) criterion may fail
with the inherently blurry predictions. �ey replace MSE in pixel

space with a MSE on image gradients, leveraging prior domain
knowledge, and further improves using a multi-scale architecture
with adversarial training.

Mid-level tracking andmatching. To overcome the challenge
of high dimensionality and ambiguity in pixel space, the predic-
tion framework of mid-level elements gradually becomes popular.
[19] explores a variation on optical �ow that computes paths in
the source images and copies pixel gradients along them to the
interpolated images. [35] combines the e�ectiveness of mid-level
visual elements with temporal modeling for video prediction.[24]
de�nes a recurrent network architecture inspired from language
modeling, predicting the frames in a discrete space of patch clusters.
�e input in [34] is a single image just like us, where the authors
predict the dense trajectory of pixels in a scene with conditional
variational autoencoder.

Existing pixels utilization. A insightful idea of improving
the quality of prediction image is to utilize existing pixels. [18]
synthesizes video frames by �owing pixel values from existing ones
through voxel �ow. [41] outputs the di�erence image, and produces
the future frame by sum up the di�erence image and raw frame.
[5] and [7] share a similar methods with us of applying �lters to
raw frames to predict new frames, and they provide the validation
of gradients �ow through �lters.

Generation model evolutions. Traditional works treat visual
prediction as a regression problem. �ey o�en formulate predic-
tion tasks with machine learning techniques to optimize the corre-
spondence estimation [11, 16, 17]. With the development of deep
networks, community of visual prediction has begun to produce
impressive results by training variants of neural network structures
to produce novel images and videos [9, 39, 40, 44]. �e probabilistic
models become popular again. More recently, generative adversar-
ial networks (GANs) [8] and variational autoencoders [15] have
been used to model and sample from distributions of natural images
and videos [6, 23, 42]. Our proposed algorithm is based on GAN,
but unlike previous works starting with a simple noise, we force our
generation model conditioned on the given image, which bene�ts
to generate reasonable transformation.

To the best of our knowledge there are no existing model that
can produce multiple videos given one single image. Perhaps the
most similar works to our task are [34, 41], where both works aim
to build a probabilistic model of future given an image. But [41]
only outputs one frame and [34] just produce optical �ows.

Also, note a concurrent work that learns to predict in transfor-
mation space is [31], where the authors predict the new frames by
predicting the following a�ne transformations. But their task is to
generate frames from sequence of frames while ours is to synthe-
size imaginary videos given a single image. In addition, our work
di�ers in that there methods are close to a regression problem as to
predict precise future frames, but our task requires a probabilistic
view and aims at generating multiple videos.

3 APPROACH
Rather than struggle in high-dimension pixel space, our idea is to
model in transformation space for video imagination: to take one
single image as input and synthesize imaginary videos that picture
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Figure 2: Pipeline of video imagination from single image. In our framework, to produce one imaginary video, the input image is �rst
encoded into a condition code and sent to transformation generator together with a latent variable. �e generated transformation sequence
is applied to input image later in volumetric merge network where frames are reconstructed with transformed images and volumetric kernels.
�ose four frames form one imaginary video. By sampling di�erent latent variable from guassian distribution, our framework can produce
diverse imaginary videos.

multiple plausible scene change of that image. Figure 2 shows the
pipeline of output one imaginary video in our framework.

In our framework, �rstly, we send latent variable and condition
code encoded from image into transformation generator, which
outputs a group of transformation sequences. Secondly, we apply
those transformation sequences to the original image and recon-
struct frames through a volumetric merge network. Finally, we
combine frames as an imaginary video then use video critic net-
work to achieve adversarial training. In the following subsections,
we �rstly give a problem description; then we describe the details
of those crucial parts and its implementation.

3.1 Problem de�nition
Firstly we use formulations to describe this task: given an image X ,
outputsm imaginary videos V̂ corresponding to di�erent reasonable
motions. Each imaginary video contains T consecutive frames fT .

Ideally, we would like to model the distribution P(V | X ) of
all possible imaginary V given X . Practically, we aim to train a
neural network Tθ with parameters θ , which implicitly models a
distribution PT (V | X ). �rough training, we expect PT (V | X ) to
converge to a good estimate of P(V | X ). Tθ (X ) yields a sample V̂
drawn from PT (V | X ), so we have

V̂ = Tθ (X ) ∼ PT (V | X ) (1)

Instead of directly modeling in pixel space, we choose to model
distribution in transformation space. We build this model based on
a key assumption that the major motions between frames can be
modeled by transformations. �at means le�ing MT denote motion
between X and fT , MT can be represented by a transformation
sequence ΦT containing p transformations. Le�ing � denote the

operation of apply transformation sequence to image, we have
fT = ΦT � X . Le�ing Φ represent the group of transformation
sequences of all videos, we have V = Φ � X . By introducing G
implicitly modeling PG (Φ | X ) in transformation space, we have a
new description of target:

V̂ = Gθ (X ) � X ∼ PT (Φ � X | X ) = PG (Φ | X ) � X (2)

To make diversity samplings of V feasible, we introduce latent
variable z that follows a speci�c distribution (e.g. Guassian Dis-
tribution). Hence, we can modify target of Gθ from modeling the
distribution PG (Φ | X ) to modeling PG (Φ | X , z). �is implicit dis-
tribution allow us to sample di�erent imaginary videos V̂ through
sampling di�erent z. �erefore, everything reduces to the following
target:

V̂ = Gθ (X , z) � X ∼ PG (Φ | X , z) � X (3)

3.2 Transformation Generator
�e job of transformation generator is implicitly modeling PG (Φ |
X , z) so that it can generate transformation conditioned on image.
Given the condition code of a static image X , together with a la-
tent variable z, the goal of transformation generator is learning to
generate a transformation group Φ.

To be speci�c, transformation generator outputs T transforma-
tion sequences {Φ1,Φ2, · · · ,ΦT } corresponding to transformations
between X and { f1, f2, · · · , fT }. Each transformation sequence ΦT
contains P transformations formed by K parameters. Transfor-
mations are generated in a sequential fashion in hope of a be�er
description of warp motion, because motion can o�en be decom-
posed in a layer-wise manner.
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Figure 3: Di�erent convolution kernels result in di�erent
motions. �e doted square denotes convolution kernel and the
right side image shows the result of applying the kernel. One simple
kernel can model motion like b) translation c) Zoom d) Warp.

We use two kinds of transformations to model motion. Since
in adversarial training, the gradient back-propagation starts from
critic network then �ows to the frames, the transformation type
we choose needs to allow gradient propagating from transformed
images to transformation generator. Fortunately, prior works in
[5, 12] revealed that there is a group of transformations having this
adorable a�ribution. We build two distinct models to form Φ based
on prior works.

A�neTransformation: Simply formed by 6 parameters, a�ne
transformation can model motions including translation, rotation,
zoom, and shear. Works in [3, 36] have shown that a�ne trans-
formation provides a good approximation of 3-D moving objects
motion. A�ne transformation works on coordinates, which would
raise a problem of unde�ned pixel locations. In practice, we use
di�erentiable bilinear interpolation to complete those pixels.

Convolutional Transformation: A convolution kernel can
naturally model simple motions like translation, zoom and warp as
shown in Figure 3. �e kernel size can vary with application scene.
For example, a 5× 5 kernel allows pixels translating over a distance
of 2 pixels. A sequence of kernel would raise the size of receptive
�eld and allow more complex or intenser motions.

3.3 Volumetric Merge Network
Volumetric merge network is responsible for reconstructing frames
{ f1, f2, · · · , fT } based on the generated transformation Φ and im-
age X . �e transformation group Φ is �nally applied to image X ,
producing an intermediate image group I consisting ofT intermedi-
ate image sequences {I1, I2, · · · , IT } that will be used to reconstruct
{ f1, f2, · · · , fT } accordingly. Combining frames temporally, volu-
metric merge network outputs imaginary video V̂ .

Since the transformation is generated in a sequential fashion, it is
intuitive to take the sequence of intermediate images as an extended
dimension representing transformation. �at is, we consider each
transformed sequence IT as one entity IT ∈ RW ×H×P that has 3
dimensions as width W , height H , and transformations P . �is
3-D entity, as shown in Figure 4, allows us to reconstruct frame by

Figure 4: Intermediate image sequence IT as 3-D entity. A
volumetric kernel can take both neighbor pixel values and interme-
diate image di�erences into consideration.

merging it in a volumetric way. Each pixel is reconstructed through
volumetric kernels. �e kernels can take both neighbor pixel values
and intermediate image di�erences into consideration.

Parameters in volumetric kernels can be obtained either from
clipping a crop of generated transformations or through a speci�c
volumetric kernel generator as shown in Figure 2. Volumetric
kernel generator (a full convolution network) concentrates more
on capturing the dependency in spatial domain, while generated
transformations can give volumetric kernel be�er understanding
of correlation between intermediate images.

3.4 Video Critic Network
To meet the requirement of a be�er criterion, we design a video
critic network Critic to achieve adversarial training. Video critic
network Critic receives synthesized video V̂ and real video V as
input alternatively, and outputs criticism judging how convincing
the input is.

A convincing video means that the frame looks clear and the
motion between frames seems consecutive and reasonable. Video
critic network Critic needs to give reference of whether the input
is plausible and realistic, which requires understanding of both
static appearance and dynamic scene. �e similar requirement can
be found in action recognition task, where lately researchers have
made progress [30]. We draw inspiration from those works, and
design Critic to have the structure of spatial-temporal convolution
networks [13].

3.5 Learning and Implementations
Our framework consists of fully feed-forward networks. �e trans-
formation generator consists of 4 fully connected layers. �e latent
code sampled from a guassian distribution has 100 dimensions, and
the condition code has 512 dimensions. We can encodeX into condi-
tion code either through re�ned AlexNet or a 5 layer convolutional
network. �e volumetric merge network consists of 3 volumetric
convolutional layers, while the last layer uses element-wise kernel.
We use a �ve-layer spatio-temporal convolutional network as the
critic network.

We employ Wasserstein GAN [2] to train our framework. �e
generator loss Lд is de�ned as:

Lд = −Ev∼PT (V |X )Critic(v) (4)
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Figure 5: �ality Performance of our framework. In each do�ed box, the �rst shows the synthesized imaginary videos given the �st
frame as input. �e second row shows the di�erence images of synthesized frames and input. (a)(b) demonstrate the results experiment on
moving MNIST and 2D shapes dataset. (c)(d) shows the result of sur�ng class on UCF101 dataset in di�erent resolution as c) 64 × 64 and d)
128 × 128. (e)(f) shows the results given image from swing and ice-dancing categories in UCF101 dataset. �e synthesized frames are sharp
and clear. Di�erence images illustrate plausible motions. Results of di�erent resolutions and di�erent image categories on UCF101 dataset
suggest our framework shows scale to the complexity of high-resolution videos.

�e critic loss Lc is de�ned as:

Lc = Ev∼PT (V |X )C(v) − Ev∼P (V |X )Critic(v) (5)

Alternatively, we minimize the loss Lд once a�er minimizing the
loss Ld 5 times until a �xed number of iterations. Ultimately, the
optimal video critic network C is hoped to produce good estimate
of Earth-Mover (EM) distance between P(V | X ) and PT (V | X ).
We use the RMSProp optimizer and a �xed learning rate of 0.00005.
ReLU activation functions and batch normalization are also em-
ployed.

We use a Tesla K80 GPU and implement the framework in Ten-
sorFlow [1]. Our implementation is based on a modi�ed version
of [23], and the code can be found at the project page1 2. Since
we model in relatively small transformation space, the model con-
verges faster than others. Training procedure typically takes only
a few days even hours depending on datasets.

1h�ps://github.com/gitpub327/VideoImagination
2 �is page contains no information about the authors

4 EXPERIMENT
In this section, we experiment our framework on 3 video datasets:
Moving MNIST [26], 2D shape [41] and UCF101 [25]. For evalu-
ations, we perform qualitative inspection and novel quantitative
assessment RIQA to measure the objective quality of the imaginary
video.

4.1 Baselines and Competing Methods
Current work about this task is quiet limited. To �nd out whether
our framework outperforms those methods that do not involve our
crucial components, we develop two simple but reasonable base-
lines for this task. For the �rst one, Baseline 1, the transformation
generator and volumetric merge network in our original framework
are replaced by a generator network that directly outputs �a�en
pixels. For the second one, Baseline 2, the whole adversarial train-
ing procedure including critic network is removed, and the network
is trained minimizing l2 loss function. �ose two baselines can also
be considered as a form of ablation experiments.

We also consider several latest works as competing methods
as shown in 1. �e task se�ing is distinct, so it is di�cult to �nd
evaluation metrics that can fairly compare all those works together,
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Table 1: Task setting comparison of related work. Multiple
output means that the method build a probabilistic model and can
sample di�erent results. ∗ indicates the methods can also experi-
ment on natural scenes like in UCF101 dataset.

Model Input Output

Ours ∗ image 5 frames(multiple)
Visual Dynamic [5] image 1 frame(multiple)
Scene Dynamic [33] image 32 frames
Dynamic Filter [5] 4 frames 1 frame
Beyond MSE [20] ∗ 4 frames 1 frame

Video Sequences [31] ∗ 4 frames 4 frames

Figure 6: Intermediate image sequences visualization. Di�er-
ent transformation models result in di�erent intermediate image
sequences IT . Each intermediate image represent one mode of sim-
ple transformations. A sequence of these intermediate image can
form more complex motion.

but we make brave a�empt later in Section 4.5 to compare our
framework against some of those works.

4.2 Moving MNIST Dataset
Dataset: We �rst experiment on a synthetic grey video dataset:

moving MNIST dataset [26]. It consists of videos where two MNIST
digits move in random directions with constant speed inside a
64 × 64 frame. �e 64,000 training video clips and 320 testing
clips are generated on-the-�y. Each video clip consists of 5 frames.
Taking the �rst frame as input, the goal is to synthesize multiple
imaginary 5-frames videos.

Setup: �ere is barely no pre-processing in our work except
for normalizing all videos to be in range [0, 1]. We experiment on
two transformation models. For convolutional transformation we
set kernel size as 9 × 9 , and the transformation sequence length
P is set as 5 for both models. We generate 4 transformation se-
quences {Φ1,Φ2,Φ3,Φ4} corresponding to 4 consecutive frames
{ f1, f2, f3, f4} at once.

Result: Figure 5 (a) illustrates the qualitative performance in
moving MNIST dataset. As we can see, frames are sharp and clear
while the shape information of digits is well preserved as we ex-
pect. �e di�erence images show that the generated transforma-
tions successfully model one motion mode so that the synthesized

imaginary video has plausible consecutive motion. Figure 6 shows
reconstructed frames and the corresponding intermediate image
sequences in di�erent transformation models.

4.3 Synthetic 2D Shapes Dataset
Dataset: We experiment our framework using a synthetic RGB

video dataset: Synthetic 2D Shapes Dataset [41]. �ere are only
three types of objects in this dataset moving horizontally, vertically
or diagonally with random velocity in [0, 5]. All three objects are
simple 2D shapes: circles, squares, and triangles. �e original
dataset only contains image pairs that have 2 consecutive frames.
We extrepolation it to convert image pairs into video clips that have
5 frames. �ere are 20,000 clips for training and 500 for testing just
like se�ings in [41]. We aim at synthesizing multiple imaginary
videos each containing �ve consecutive frames.

Setup: �e input image size is set as 64 × 64 so that we can
inherit the network architecture and se�ings in section 4.2. �e
transformations applied to each color channel are set to be identical
for the consistent of RGB channels.

Result: Figure 5 (b) illustrates the qualitative performance in 2D
shape dataset. Appearance information including color and shape
is reconstructed at a satisfying level, and the motion is plausible
and non-trivial. Multiple sampling results are shown in Figure 7. It
is clear that sampling di�erent zs lead to di�erent imaginary videos
with the same input image . Motions in those videos are notably
dissimilar. Figure 8 gives an perception comparison among our
framework and two baselines. �e three methods are trained in
same iteration. Obviously, generation from scratch as Baseline 2
needs much longer training time and l2 loss criterion as Baseline 1
not only make the result lacking of diversity, but also leads to blur
because of intrinsic ambiguity of image.

4.4 UCF 101 Dataset
Dataset and setup: �e former datasets are both synthetic

datasets. For natural scene, we experiment on UCF101 dataset
[25]. �e dataset contains 13,320 videos with an average length of
6.2 seconds belonging to 101 di�erent action categories. �e origi-
nal dataset are labeled for action recognition, but we do not employ
those labels and instead we use the dataset in an unsupervised way.
Videos with an average length of 6.2 seconds are cut into clips that
each consists of �ve frames. We prepare 15,680 video clips for each
category as training samples and 1,000 unseen image as testing
samples. �e video frames are reshaped to 128 × 128 and 64 × 64
for di�erent resolution experiments. �e convolutional kernel size
is set to 16 and 9 accordingly.

Result: Figure 5 (c)(d) illustrate the qualitative performance in
sur�ng class of di�erent resolutions. Obviously our framework pro-
duce fairly sharp frames. It successfully escapes from appearance
deformation of surfer and wave. �e di�erence images suggest that
our framework can model plausible waving and sur�ng motions.
�e dynamic results seem rather realistic, so we strongly recom-
mend a quick look at the small gif demo in supplementary material.
Figure 9 shows the convergence curve of EM distance. We can see
the curve decrease with training and converge to a small constant.
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Figure 7: Diverse video imagination: multiple imaginary
videos from same input image. (a) denotes the input image
and one imaginary video sample as reference. �e �rst column of
(b) indicates di�erent input zs, the rest columns shows the di�er-
ence frames of imaginary video samples minus the reference. Each
row of (b) illustrates a unique imaginary video and its unique z.

Figure 8: Synthesis result of customBaselinesWith same �xed
training iterations, our framework produce obviously be�er result.
l2 loss in baseline 1 brings blur. Baseline 2 that reconstruct pixel
from noise needs much longer training time and cannot produce
recognizable frames.

�e absolute of the constant is meaningless because the scale of
EM distance varies with architecture of critic network.

4.5 Evaluation and Comparison:
As shown in Table 1, there is no existing work shares the completely
same task se�ings as ours. To make fair comparison to other works
and baseline, we perform both qualitative inspection and novel
quantitative evaluation.

Frame quality assessment. �antitative evaluation of genera-
tive models is a di�cult, unsolved problem [29]. �e video imagina-
tion task is a multi-modality problem. But traditional full reference

Figure 9: Curve of EM distance estimate at di�erent steps of
training. �e estimation of EM distance is done by a video critic
network C that is well trained. We can see that the EM distance
decrease and converge with training.

Table 2: quantitative evaluation comparison among related
visual prediction work. �e lower RIQA indicates be�er frame
reconstruction quality. �e BRISQUE score obviously varies with
scenes and resolutions. RIQA points out the decreasing proportion
between input and output, hence successfully re�ects the recon-
struction quality.

Methods Input
BRISQUE

Output
BRISQUE

RIQA

Ours 64 × 64 45.2164 47.0168 3.98%
Ours 128 × 128 35.9809 36.7120 2.03%

Baseline 1 45.2164 50.7681 12.28%
Baseline 2 45.2164 89.2315 97.34%

Optical Flow [4] 39.3708 40.8481 3.75%
Beyond MSE [20] 46.3219 50.0637 9.24%

Video Sequences [31] 39.3708 42.8834 8.92%

image quality assessment methods (FIQA) requires a precise ground
truth image as reference hence they are no longer appropriate. We
employ popular Blind Image �ality Assessment(BIQA) method
BRISQUE[21] as our non-reference quantitative evaluation metric.

Since BRISQUE is based on natural scene statistic, it is not ap-
plicable in synthetic image. we implement it on those methods that
can synthesize natural scene images in UCF101 dataset [4, 20, 31].
A key problem of employing this metric is that the scenes and res-
olutions of the synthesized videos may be varied, so it is unfair
to make comparison among those samples directly. Fortunately,
the quality of the input image can be a solid quality reference. We
calculate the decreasing proportion of quality score between inputs
and outputs, and take it as our assessment metric: Relative image
quality assessment (RIQA).

RIQA =
BRISQUE(Input) − BRISQUE(Output)

BRISQUE(Input) (6)

It is fair and reasonable because RIQA eliminates the natural quality
di�erences between scenes and resolutions while have the ability
of re�ecting the crucial reconstruction quality well.
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Figure 10: Perceptual Comparison among related works using UCF101 dataset. �e input frames are from Skijet class. �e output
frames are reshaped to same size for a fair visual inspection. Notice that our framework only takes one frame as input (the green square)
while the rest methods take four frames as input (the grey rectangle). Our result are sharp and relatively clear while the motions of rider and
skijet are recognizable and plausible.

Table 3: Analysis of the settings of models and hyper-
parameters. K refers to the number of parameters forming trans-
formation. P refers the sequence length of transformation for re-
constructing one frame.

Se�ings RIQA

a�ne transformation
with K = 6 and P = 5 2.03%

a�ne transformation
with K = 6 and P = 10 4.79%

convolutional transformation
with K = 8 × 8 and P = 5 4.03%

convolutional transformation
with K = 16 × 16 and P = 5 4.01%

As shown in Table 2, diversity of the scenes and resolutions
makes the raw BRISQUE score not comparable, but the RIQA tells
the reconstruction quality change. We can see that our framework
outperform other methods, and the poor performances of baselines
suggest the architecture of our framework is reasonable. In addi-
tion, our framework and Video Sequence[31], that are based on
transformation space, do produce images with be�er qualities than
[20], which reconstruct frames from scratch.

Table 3 shows the results when we change the hyper-parameters
and some model se�ings, including the number of parameters K
forming transformation, the sequence length of transformation P
for reconstructing one frame, and the type of transformations. �e
results demonstrate that our framework is overall robust to those
choice. It seems that a�ne transformation model with transforma-
tion sequence length P = 5 can achieve the best performance.

�alitative inspection. Figure 10 shows the perceptual com-
parison between our framework and three competing methods
[4, 20, 31] that also experimenting on UCF101 dataset. Our frame-
work produces four frames conditioned on one frame while other

methods take a sequence of four frames as inputs. �e simple opti-
cal method [4] fails due to the strong assumption of constant �ow
speed, yet it perform relatively be�er in quantitative evaluation
because the image get weird but still maintain sharp. Beyond MSE
[20] maintains some appearance but still struggles in deformation
and blur. �e transformation-based model [31] provides fairly rec-
ognizable result but also gets blurry. Considering [31] actually takes
four frames as input and aims to predict future frames, the motion
looks less consecutive and convincing. Our framework synthesizes
sharp and recognizable frames, and the dynamic scene looks real-
istic and plausible. �e motion in our result (wave raising) is not
identity to motion in the real video (wave falling), this is because
the intrinsic ambiguity of one simgle image. Notice that the yellow
symbols on the bo�om turn to pieces in our framework while in
[31] it remains still. We believe this is because [31] splits frame into
patches so gains be�er description of patch variance.

Failure Case. A typical failure case in a�ne transformation
model is that the motions between frames are plausible yet unex-
pected black pixels appear somewhere in the frames. We think this
is caused by the empty pixels in intermediate images a�er applying
a�ne transformations. In convolution model, one common failure
mode is that some part of the objects lack resolution while the sil-
houe�es remain recognizable. We believe a more powerful merge
network would be a promising solution in both cases,and we leave
this for future work.

5 CONCLUSION
In this paper, we have presented a new framework to synthesize
multiple videos from one single image. Speci�cally, our framework
uses transformation generation to model the motions between
frames, and reconstructs frames with those transformations in a
volumetric merge network. We also present a novel evaluation
metric to assess the reconstruction quality. We have demonstrated
that our framework can produce plausible videos with state-of-the-
art image quality on di�erent datasets.
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