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CSPS: An Adaptive Pooling Method
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Abstract—This paper proposes an adaptive approach to learn
class-specific pooling shapes (CSPS) for image classification.
Prevalent methods for spatial pooling are often conducted on
predefined grids of images, which is an ad-hoc method and, thus,
lacks generalization power across different categories. In contrast,
our CSPS is designed in a data-driven fashion by generating
plenty of candidates and selecting the optimal subset for each
class. Specifically, we establish an overcomplete spatial shape set
that preserves as many geometric patterns as possible. Then, the
class-specific subset is selected by training a linear classifier with
structured sparsity constraints and color distribution cues. To
address the high computational cost and the risk of overfitting due
to the overcomplete scheme, the image representations for CSPS
are first compressed according to dictionary sensitivity and shape
importance. These representations are finally fed to SVMs for the
classification task. We demonstrate that CSPS can learn compact
yet discriminative geometric information for different classes that
carries more semantic meaning than other methods. Experimental
results on four datasets demonstrate the benefits of the proposed
method compared with other pooling schemes and illustrate its
effectiveness on both object and scene images.

Index Terms—Class-specific pooling shapes (CSPS), dictionary
sensitivity, image classification, multi-shape matching kernel,
representation compression.

I. INTRODUCTION

IMAGE classification has been a challenging task in multime-
dia analysis field for decades. Most successful approaches

for this task are based on the bag-of-features (BoF) model
[1], which has shown promising results on many popular data
sets. The standard BoF model starts by identifying local im-
age patches, using either normalized raw pixel values or hand-
crafted features such as SIFT [2] or HoG [3]. Such low-level
features are then encoded into an over-complete representation
using various algorithms such as K-means or sparse coding [4].
Finally, the histogram of the summed feature codes for the en-
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Fig. 1. Comparison of the standard SP and the CSPS learned by our method.
(a) Three-level SP. (b) CSPS.

tire image is regarded as a signature for classification. However,
spatial layout information is completely neglected in such meth-
ods because each feature code in an image is treated equally.
To overcome this drawback, [5] pioneered the direction of ex-
ploiting spatial layout properties and proposed spatial pyramid
(SP) to embed spatial information of local features. In practice,
this method first partitions an image into a fixed sequence of
increasingly finer uniform grids (such as 1 × 1, 2 × 2, 4 × 4)
and then concatenates the BoF representation in each grid with
a certain pooling scheme to achieve the final representation. The
idea of spatial pooling dates back to an analysis of complex cells
in the mammalian visual cortex [6], which identifies mid-level
image features that are invariant to small spatial shifting. The
spatial invariance property also reflects the concept of locally
order-less images [7], which suggests that low-level features can
be grouped spatially to provide information about the overall se-
mantics. Most recent research on spatial pooling aims to find a
good pooling operator, which can be considered as a function
that produces informative statistics based on local features in
a specific spatial area. For example, average and max pooling
strategies have been found in various algorithms, respectively,
and systematic comparisons between such pooling strategies
have been presented and discussed in [8], [9]. The SP-based
representation guides most approaches of image classification
and benefits many state-of-the-art systems [10]–[12].

However, one obvious limitation in standard SP is the uniform
feature pooling style, which pre-defines the grids for an image
and uses all the spatial shapes equally. We argue that this uniform
scheme lacks the capability to capture adaptive spatial informa-
tion. For instance, an image belonging to “meeting-room” class
in MIT-67 dataset [13] is coped with a three-level standard SP
and the proposed class-specific pooling shape (CSPS) method
shown in Fig. 1(a) and (b), respectively. It is obvious that the
spatial pooling shapes learned by CSPS separate the target and
background properly, providing more reasonable and seman-
tical spatial information. In such cases which are common in
natural images, the hand-crafted and uniform pooling shapes in
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standard SP can not focus effectively on the regions of interest
and thus lack generalization power across different classes on
large datasets.

In this paper, we present a data-driven approach that adap-
tively learns CSPS to overcome the aforementioned limitation.
Our idea is motivated by the observation that images in the
same class often share common spatial layout properties, i.e.,
the background and target tend to follow similar spatial distribu-
tions. In practice, we first adopt the concept of over-complete set
and establish a set of spatial shapes containing as many shapes as
possible. This scheme helps us collect more flexible patterns of
spatial distribution. Instead of using pre-defined spatial shapes
as in standard SP, we train a linear classifier with structured spar-
sity constraint and color distribution cues to select the optimal
subset for each class. In particular, the sparsity term encour-
ages the classifier to extract a small but essential subset, thus
avoiding redundancy. The color term makes the selected shapes
more semantically reasonable by following color distribution
inference. We expect to learn certain pooling shapes for each
class that capture the most semantically useful geometric prop-
erties. On the other hand, although the over-complete process
helps preserve more candidates, it also suffers from increased
computational cost and the risks of over-fitting. To solve this
issue, we compress the representations over the CSPS accord-
ing to the shape importance and dictionary sensitivity. These
are finally fed to an SVM with a multi-shape matching kernel
to perform the image classification task. The main contributions
of this paper can be summarized as follows.

1) We address the limitation of standard SP pooling and
propose a novel framework that uses CSPS for image
classification. CSPS can naturally generate more geomet-
ric patterns and learn adaptive yet semantically important
spatial information for each class through sparsity con-
straints and color distribution cues.

2) We introduce two methods to compress the image repre-
sentations over CSPS that are based on dictionary sen-
sitivity and shape importance. The latter can be further
used in SVMs with a proposed multi-shape matching ker-
nel that preserves the spatial impact of different spatial
shapes.

3) We validate the effectiveness of the proposed approach
through extensive experiments. The results demonstrate
the benefits of CSPS compared with standard spatial pool-
ing techniques and other state-of-the-art methods on both
object and scene images.

The remainder of the paper is organized as follows.
Section II reviews related works concerning spatial informa-
tion exploration for image classification. Section III presents
our image classification framework including the approach for
adaptively learning CSPS, representation compression and the
multi-shape matching kernel. Extensive experiments on four
data sets along with analysis and comparison are provided in
Section IV. We conclude the paper in Section V.

II. RELATED WORK

The studies on image classification in the literature can be di-
vided into two categories: one that relies on the BoF framework

and hand-crafted descriptors to achieve image-level representa-
tions while the another that uses deep neural networks (DNNs)
to learn powerful features from raw pixels. In this section, we
briefly review typical DNN models, particular the recent suc-
cessful convolutional neural networks (CNNs), and then focus
on the BoF framework and spatial pooling techniques.

DNN is a family of learning models that can offer good repre-
sentations of data using a structure stacked into multiple layers,
in which each layer represents a different degree of abstraction
of data features. One typical model is CNNs, which saw heavy
use in the 1990s in the literature such as LeNet [14], but then
fell out of fashion with the rise of SVMs. In 2012, AlexNet
[15] rekindled the interest of the computer vision community in
CNNs, by showing substantially higher image classification ac-
curacy on the imagenet large scale visual recognition challenge
[16]. This success resulted from training a large CNN on 1.2
million labeled images, together with a few twists on LeNet such
as rectified linear units and “dropout” regularization. Since then,
many attempts have been made to design more complex mod-
els including GoogLeNet [17], ZF-net [18], VGG-net [19] and
so on. These models have proven powerful but require a great
deal of training data. However, recent work [20] shows that
BoF can yield competitive or superior performance on smaller
data sets than DNN models. Thus, the purpose of this paper is
to further improve the BoF framework with a focus on spatial
pooling.

The BoF model originated from text processing [21] and
was initially introduced to image analysis in [22]. Specifically,
each image in this model is represented as an order-less his-
togram of local features or their codewords (these codewords
are often acquired from a carefully constructed dictionary us-
ing some unsupervised clustering techniques such as k-means
clustering [23] and sparse coding [10]). However, in this model,
spatial layout information is completely discarded. To overcome
this limitation, various extensions have been proposed from
two directions: the properties of local spatial layout and global
spatial layout. Here, we review related work from these two
perspectives.

Local spatial layout information mainly explores the relative
positions or pairwise positions of local features. Researchers in
[24] used the combination of correlograms and visual words
to jointly incorporate appearance and shape information. Com-
pact spatial modeling without loss of discrimination is achieved
through the adaptive vector quantized correlograms, which the
authors call “correlatons.” In [25], an efficient feature selection
method based on boosting was introduced to mine high-order
spatial features. Selected lower order features are employed to
avoid exhaustive computation. Qi et al. [26] believe that one
single model has difficulties in representing various spatial con-
text in different images and proposed constructing a prototype
set of kernelized spatial-context for image classification. Rela-
tive features in [27] were learned on a reference basis and the
authors proposed an adaptive pooling technique to assemble the
learned multiple relative features. They also achieved good per-
formance on image classification tasks. Recently, [28] presented
a novel localized visual feature named PixNet that embeds rela-
tive spatial information by learning different image parts while
preserving a compact representation. Moreover, [29] presented
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a novel feature selection method based on a class-specific code-
book, which was shown to learn distinctive local features.

On the other hand, global spatial layout information leverages
the absolute positions in images, an idea that is identical to our
focus in this paper. Based on the pioneering work [5] where
the original SP was proposed, [10] and [30] showed that in-
corporating advanced feature coding strategies can improve the
classification performance. Moreover, combinations with super
vector [31] and fisher vector [32] have been demonstrated to
be effective in obtaining a good image representation. More re-
cently, several advanced image classification systems have been
based on SP, but involving different parameters including the
number of pyramid levels and the structure of the grids. For in-
stance, [5] and [10] uses up to four pyramid levels with uniform
grids of 1 × 1, 2 × 2, 4 × 4 and 8 × 8, whereas the winner of
the Pascal VOC 2007 competition [33] (and many others such
as [31]) used three pyramid levels with grids of 1 × 1, 2 × 2,
and 3 × 1. However, these SP parameters are still chosen in an
ad-hoc manner and few works report systematic construction of
the representation.

Although the extensions of standard SP have been largely ex-
plored, less attention has been paid to pursuing adaptive spatial
pooling shapes in a learning procedure. In this paper, we address
this issue using a data-driven approach to adaptively learn the
optimal pooling shapes for each class of images. The work most
related to ours is [11] which also adopted the idea of using an
over-complete set and formulated the problem in a multi-class
fashion to learn discriminative spatial shapes for the whole data
set. However, because different categories often have different
distribution of spatial properties, we attempt to assemble local
features through adaptive pooling shapes rather than fixed spa-
tial patterns, and learn the corresponding CSPS. Moreover, we
also try to leverage color distribution information which is often
used for region of interest (ROI) detection and segmentation in
our learning procedure to select more semantically reasonable
spatial information by following color cues.

III. APPROACH

In this section, we present our image classification framework
with a focus on learning CSPS and discuss the process from es-
tablishing an over-complete spatial shape set to learning CSPS
with sparsity and color constraints. Robust yet compact image
representations over CSPS are then compressed with dictionary
sensitivity and shape importance. We finally feed the represen-
tation over CSPS fed to SVMs using a proposed multi-shape
matching kernel for classification.

A. Over-Complete Spatial Shape Set

We first establish an over-complete spatial shape set which
preserves candidates with more spatial distribution patterns. In-
stead of only using certain uniform squares in standard SP as
in Fig. 2(a), we use all the rectangular shapes, including as
many geometric properties of the local features as possible.
Specifically, let a and b represent the number of horizontal and
vertical lines to separate an image, we collect a total of R =

Fig. 2. Toy example of pooling shapes generated by standard SP 2 (a) and the
proposed CSPS 2 (b) on a 4 × 4 grid. Standard SP yields 1 × 1 + 2 × 2 + 4 ×
4 = 21 rectangle grids, whereas ours can produce

(
4+1

2

)
×

(
4+1

2

)
= 100

candidates.

(a + 1
2 ) × ( b + 1

2 ) rectangles as in Fig. 2(b) and the over-

complete spatial shape set is denoted by S = {s1 , s2 , . . . , sR}.
Note that the over-complete scheme makes it possible to ob-

tain flexible shapes such as circles and polygons, which can
capture more adaptive and semantically meaningful geometric
properties for particular visual recognition tasks. For simplic-
ity of comparison with the standard SP scheme, we apply only
the increasing horizontal and vertical lines to form rectangular
shapes in our implementation.

B. CSPS Learning (CSPSL)

Because S is over-complete with much redundancy, we
attempt to select the optimal subset for each class because
images in the same class often share common spatial lay-
out distributions. In other words, we want to achieve SL =
{S1 ,S2 , . . . ,St} for the image set containing t classes where
S i denotes a certain subset of S for class i.

To this end, given a set of images I = {I1 , I2 , . . . , In} we
first the extract local features and employ a feature coding al-
gorithm to obtain a dictionary D = {d1 , d2 , . . . , dt}. These two
steps are addressed a lot in the literature and we use different
strategies according to different datasets in practice. Next, spa-
tial pooling of the feature codes is conducted on each shape of
S. In this manner, the ith image can be represented by concate-
nating the pooled feature codes as xi = {xs1

i ,xs2
i , . . . ,xsR

i }
and the image set can be represented as X = {x1 ,x2 , . . . ,xn}.
Then, a linear classifier is trained using the one-versus-all
scheme to select the optimal subset for each class, leading to the
following optimization problem:

min
w,b

1
N

N∑

n=1

L(wTxn + b, yn ) + λReg(w) (1)

where vector w and scalar b are the parameters to be estimated;
xn is the feature vector of the nth sample; yn ∈ {−1,+1} is
the label of the nth sample, indicating class i and the “rest-of-
the-world;” L(wTxn + b, yn ) is a certain non-negative convex
loss function to punish a certain set of {w, b}, Reg(w) is a
regularizer term and λ ∈ R is the regularization coefficient. In
practice, we choose the binomial negative log likelihood as the
loss function, as shown below

L(wTxn + b, yn ) = ln(1 + exp(−yn (wTxn + b)). (2)
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Fig. 3. Examples of raw images and the corresponding learned CSPS with
color distribution cues in L∗a∗b space on MIT-67 dataset. (a) Raw images.
(b) Learned shapes with color segmentation.

The regularization term Reg(w) in (1) selects the subset for
each class containing the most representative and discrimina-
tive spatial shapes. Thus we employ two regularization terms;
Reg(w) can then be reformulated as

Reg(w) = Regs(w) + Regc(w) (3)

where Regs(w) and Regc(w) are the sparsity constraint term
and color distribution constraint term, respectively. These two
regularization terms are described in the following.

Color distribution cues. To leverage color distribution infor-
mation as learning cues, we apply color segmentation to assign
a certain color channel to each pixel in advance. In practice, we
simply employ the K-means algorithm to cluster an image with
k colors by converting the RGB color space to the L∗a∗b space,
denoted by C = {c1 , c2 , . . . , ck}. Because the learned shapes
capture dominant channels in color space based on the observa-
tion that target objects tend to follow different color distribution
from the background, we define the color regularization term in
(3) as

Regc(w) =
R∑

i=1

max
j

{(
N(c, i)
P(j)

) N ( c , i )
N ( c )

}

, j = {1, 2, . . . , k}

(4)
where N(ci, j) denotes the number of the ith color in sj , N(ci)
is the number of pixels of the ith color and P (j) is the number
of pixels in the sj region. The base term indicates the propor-
tion of a color in each shape and the exponent term stands for
the proportion of that color in a specific channel. Using this
regularization term, the classifier tends to select semantically
reasonable shapes by following color distribution inferences.
Some examples of learned shapes are shown in Fig. 3.

Structured sparsity regularization. Although significant ef-
forts have been conducted on the design of sparse regulariza-
tion terms such as the squared Frobenius norm and �1,∞ norm
[11], recent analysis [34] shows that mixed-norm regulariza-
tion enjoys the group sparsity propert under certain conditions,
encouraging content-based structured feature selection in high-
dimensional feature space. Following the instructions in [34],
we adopt the idea of structured sparsity and define the sparse

Algorithm 1: Class-Specific Pooling Shape Learning

Input: n images X = {x1 ,x2 , . . . ,xn} belonging to t
classes

Output: CSPS SL = {S1 ,S2 , . . . ,St}
1: for i = 1, . . . , t do
2: Set the label of class-i images +1 and the others −1
3: Set the feature set F empty
4: for ii = 1, . . . , η do
5: while {w, b}ii not stable do
6: Select a subset F̂ with the largest score

using (6)
7: F ← F

⋃
F̂

8: Solve Eq. (1) using F̂
9: {w, b}new

ii ← argmaxL({w, b}old
ii ) using (2)

10: end while
11: end for
12: S i ← {w1 , . . . ,wη}
13: end for
14: return SL = {S1 ,S2 , . . . ,St}

regularization term as a �2/�1 norm regularizer

Regs(w) = ‖w‖2,1 =
R∑

i=1

‖wsi
‖2 (5)

where wi is the ith group of parameters corresponding to si .
This regularizer motivates dimensions in the same group to
be jointly zero. Thus the optimization procedure tends to se-
lect a much smaller but more discriminative subset. Beyond
the usual �1 norm regularization, sparsity is now imposed on
spatial shape level rather than merely at the feature level.
To solve the joint learning with mixed norm regularization
problem, we employ the primal-dual algorithm proposed in
[35].

Fast learning. Although the over-complete scheme provides
flexible spatial shapes with more geometric patterns, optimizing
(1) is still a computationally challenging task despite its convex-
ity, because it has a high dimensional search space. In practice,
we adopt the greedy approach proposed in [11] by starting with
an empty set of selected features and incrementally adding fea-
tures to the set. Specifically in each iteration, for the feature i
that has not been selected, we compute the score of the �2 norm
of the gradient of (2) as follows:

score(i) =
∥
∥
∥
∥

∂L(w, b)
∂wi

∥
∥
∥
∥

2

Fro
. (6)

We then select the feature with the largest score and add it
to the feature set. The selection procedure can be controlled by
a threshold to limit the size of feature set. In practice, we follow
the suggestion of [11] and set the active set size to 100 (this
choice is discussed in Section IV-C). Algorithm 1 summarizes
the overall procedure of our CSPSL method.
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C. Representation Compression

Another essential issue of concern is the high dimensional
representations over CSPS, which are even larger than those in
standard SP due to our over-complete grids. We address this
problem by finding a more compact representation that main-
tains or even improves their original counterparts. To this end,
several works address the problem by searching compact vocab-
ulary construction [36]–[38]. In particular, [37] and [39] provide
guidelines for the compression of vocabularies using agglomer-
ative information bottleneck (AIB) theory. In the following, we
briefly review the AIB compression algorithm and present our
corresponding compression method.

AIB compression. AIB characterizes the discriminative power
of the dictionaryD as mutual information I(d, c) from the visual
word d and the category c as

I(d, c) =
∑

d∈D

C∑

c=1

P (d, c) log
P (d, c)

P (d)P (c)
(7)

where the joint probability P (d, c) is estimated from training
images by simply counting the number of occurrences of each
visual word d ∈ D in each category c ∈ {1, . . . , C}. AIB itera-
tively compresses the dictionary D by merging the two visual
words di and dj that cause the smallest decrease Dij in the
mutual information I(d, c), an operation can be regarded as the
discriminative power. Let [x]ij denote two visual words corre-
sponding to the dictionary after merge; then, Dij is

Dij = I(d, c) − I([x]ij , c). (8)

The information I(d, c) is monotonically reduced after each
merge. Merging is often conducted iteratively until the desired
number of visual words are obtained.

Dictionary sensitivity. The use of non-optimized dictionar-
ies for building CSPS results in its huge dimensionality. Our
aim is to optimize the dictionaries in a manner that maintains
or improves the original CSPS performance. To this end, we
investigated the use of the AIB algorithm as proposed in [31].
Specifically, we propose to learn the most compact vocabulary
D that best suits each CSPS by eliminating occurrences of the
least informative features from each specific shape in our CSPS.
For instance, for an a × b over-complete shape set, we first elim-
inate the smallest shapes but those bigger than 1 × 1 (i.e., 1 × 2)
the least informative visual word from all its R spatial occur-
rences. Subsequently, we eliminate them from 1 × 3, 1 × 4 and
2 × 2, etc. To this end, the probability of a spatial visual word
P (di) at shape i is then computed as follows:

P (di) =

⎧
⎨

⎩

occ(di |c), if i = 1
∑

j

P (dj ), else (9)

where j indicates a specific region inside of shape i, and
occ(di |c) is the number of occurrences of each spatial visual
word di ∈ D in each category c. Finally, we use the informa-
tion content criteria to measure the discriminative power of the

Fig. 4. Samples from PASCAL VOC 2007 dataset.

spatial vocabulary D and converge at a certain threshold

I(D, C) =
∑

i

∑

t

p(di, ct) log
p(di, ct)

p(di)p(ct).
(10)

Shape importance. Except the dictionary compression, we
expect the most valuable shapes to be preserved. To measure the
importance of each shape, we apply a leave-one-out paradigm;
then the importance value of a particular shape j is defined as the
increase of training error after neglecting the shape dimensions

Ij =
Errorj − Error0

Error0
(11)

where Error0 denotes the training error over all the training data.
The largest Ij indicates that the neglected dimensions of the jth
shape are more important and discriminative. In practice, we
select the top η Ij for each class. Beyond the target of repre-
sentation compression, Ij can also be used in the subsequent
multi-shape matching kernel as a weight term.

D. Multi-Shape Matching Kernel

At this point, we have learned the top η CSPS for each class.
We then employ SVMs for classification. Notice that standard
SP treats each pooling shape equally in the matching kernel,
neglecting the differences between spatial shapes. We attempt
to weight the shapes because important regions should be given
more attention. Specifically, we use the shape importance value
I in (11) as a weight to indicate the importance of differ-
ent shapes and define the multi-shape matching kernel as the
weighted sum of the separate shape kernels

K(x1 ,x2) =
η∑

m=1

Im · K(xsm
1 ,xsm

2 ) (12)

where the kernel K can be any kernel function under Mercer’s
theorem. With this multi-shape matching kernel, a one-versus-
others classifier is prepared for the classification task.

IV. EXPERIMENTS

In this section, we report the experimental results on both
object and scene data sets for the image classification tasks. Our
experiments are conducted using a single core of an eight-core
Intel Core i7-3770K CPU running at 3.50 GHz with 16.0 GB
RAM. We evaluate the performance of our CSPS scheme mainly
by comparing with traditional SP-based schemes and other com-
petitive approaches that exploit geometric information to obtain
image-level representations. Because most methods rely on dif-
ferent processing procedures using low-level descriptors accord-
ing to different data sets, we describe our implementation details
and report the quantitative results separately.
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TABLE I
CATEGORY-WISE ACCURACY (%) WITH DIFFERENT POOLING STRATEGIES ON PASCAL VOC 2007 DATASET

plane bike bird boat bottle bus car cat chair cow table dog horse motor person plant sheep sofa train tv AP

MP [30] 68.2 57.7 39.9 61.6 24.0 57.4 73.4 53.5 49.7 36.9 42.3 39.6 73.4 62.2 79.4 23.8 42.7 48.4 68.0 47.7 52.5
MWLP [40] 68.4 56.9 41.1 62.9 23.8 58.8 73.9 53.4 50.1 37.2 41.7 40.4 74.3 62.1 79.5 24.1 42.4 49.3 68.8 48.8 52.8
OCP [41] 74.2 63.1 45.1 65.9 29.5 64.7 79.2 61.4 51.0 45.0 54.8 45.4 76.3 67.1 84.4 21.8 44.3 48.8 70.7 51.7 57.2
SP [42] 70.5 58.6 42.9 61.6 28.3 59.4 74.8 54.8 51.4 39.4 44.3 41.1 74.9 65.5 81.8 27.6 43.9 48.9 69.9 49.8 54.5

CSPS 73.1 66.7 49.4 72.2 36.5 62.3 75.2 66.4 53.0 41.0 55.8 48.0 76.8 67.4 86.2 29.5 46.2 44.3 73.1 52.0 57.8

TABLE II
AVERAGE PRECISION (%) WITH DIFFERENT SETTINGS OF λ AND k

A. Object Classification

PASCAL VOC 2007 [43] is a challenging dataset composed
of images from 20 object categories gathered from Flickr and
characterized by a high variability of viewing angle, object size,
illumination, pose and appearance. We use the standard protocol
which consists of training and validating on the “train” and “val”
sets, respectively, and then testing on the test set. The classifica-
tion performance is evaluated using the average precision (AP)
measure, which is the standard metric used by the PASCAL
challenge [43]. Some sample images are shown in Fig. 4.

We report the benefits of our strategy in Table I by comparing
CSPS with related adaptive pooling methods. For a fair compar-
ison, we run the code for low-level feature extraction and feature
coding provided by [30]. In particular, we set the over-complete
shape sets to 5 × 5 and choose the corresponding parameters in
a cross-validate fashion. Note that [30] is a standard max pooling
strategy that uses pre-defined grids as discussed in Section III,
whereas [42] learns a supervised pooling method by separating
the image and feature domains. A more recent from [40] uses
multiple methods for local pooling. In addition, [41] leverages
a separate representation of background and foreground by first
inferring the object locations.

There are two important parameters in our method. One is
λ as shown in (1), which controlls the regularization term for
CSPSL, and the other is k from (4), which affects the color
distribution cues in (1). We show the results in Table II as a
function of the choice of λ and k. In most situations, for a given
number of λ, the classification ability improves as k increases.
On the other hand, when k is fixed, the optimal choice is often at
λ = 0.8. Overall, the best performance is obtained when k = 12
and λ = 0.8.

As shown in Table I, our proposed CSPS outperforms the
other approaches in most cases. An interesting contribution is
proposed in [41] where the authors report a very similar perfor-
mance (57.2%) by adopting a pooling strategy that assumes a

Fig. 5. Some samples (CD, duck, and iPod from top to bottom) from Caltech-
256 dataset.

priori knowledge of the location of the object of interest. How-
ever, in our method, we do not rely on such a priori knowledge
because the learning procedure in our proposed scheme selects
several essential candidates that naturally capture semantically
meaningful shapes, and these shapes lead us to focus on the
salient regions of images. Finally, note that the results reported
in [41] (59.3%) were higher than the ones we obtained running
their code. This might be due to different low-level features and
possibly to post-processing of the resulting image features be-
cause we conduct the stages of feature extraction and feature
coding following the instructions of [30].

Caltech-256 [44] is another popular object data set that con-
tains 29 780 images in 256 object categories. The number of
images in each category varies from 31 to 800. Some samples
of this data set are shown in Fig. 5. Following the common
experimental setup for this data set, we validate our method on
{5, 10, . . . , 60} training images for each class, respectively, and
test on the rest. To cross-validate the parameters, we use half the
training data for training, the other half for validation and then
we retrain with the optimal parameters on the full training data.
We repeat each experiment ten times. We measure the classifica-
tion accuracy for each class and report the average as well as the
standard deviation. In Fig. 6, we compare a popular SP baseline
[10] with our CSPS (using only dense SIFT descriptors) as a
function of the number of training samples. We can observe that
CSPS consistently outperforms the standard SP. This is a favour
of the advantage of our adaptive pooling method.

We also report our results in Table III and compare them
with the results from several state-of-the-art approaches. We
consider both the case where we use only SIFT descriptors
and the case where we use SIFT descriptors along with local
color statistic descriptors (which prove to be effective on this
dataset [20]) with a simple weighted linear combination. We
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Fig. 6. Comparison of SP and CSPS on Caltech-256 dataset (both using only
use SIFT descriptors). We report the mean and three times the average deviation.

TABLE III
PERFORMANCE (%) COMPARISON OF TWO IMPLEMENTATIONS OF

CSPS WITH OTHER APPROACHES ON CALTECH-256 DATASET

Method 15tr. 30tr. 45tr. 60tr.

Griffin et al. [44] - 34.1 (0.2) - -
Boiman et al. [46] - 42.7 (-) - -
Bo and Sminchisescu [49] 23.2 (0.6) 30.5 (0.4) 34.4 (0.4) 37.6 (0.5)
Gehler and Nowozin [47] 27.7 (0.5) 34.0 (0.4) 37.5 (0.6) 40.1 (0.9)
VanGemert et al. [48] 34.2 (-) 45.8 (-) - -
Wang et al. [30] 34.4 (-) 41.2 (-) 45.3 (-) 47.7 (-)
Boureau et al. [8] - 41.7 (0.8) - -
Feng et al. [50] 35.8 (-) 43.3 (-) 47.3 (-) -
Kulkarni and li [51] 39.4 45.8 (-) 49.3 (-) 51.4 (-)
Bergamo and Torresani [45] 39.5 (-) 45.8 (-) - -
Bo et al. [52] 40.5 (0.4) 48.0 (0.2) 51.9 (0.2) 55.2 (0.3)

CSPS + SIFT 39.2 (0.4) 46.1 (0.2) 50.8 (0.2) 55.1 (0.4)
CSPS + CI 42.2 (0.3) 49.1 (0.3) 51.8 (0.4) 53.6 (0.2)

now provide more details about the different techniques. The
baseline [10] is a reimplementation of the original SP [5]. Sev-
eral systems are based on the combination of multiple channels
that correspond to many different features, including those from
[45]–[48]. Other works consider a single type of descriptors,
typically SIFT descriptors [2]. The work in [49] makes use of
the efficient match kernel framework, which embeds patches
in a higher-dimensional space in a non-linear fashion. In [30],
the authors consider different variants of sparse coding and [8],
[40], [50] design different spatial pooling strategies. The method
described in [51] extracts on the order of a million patches per
image by computing SIFT descriptors from several affine trans-
forms of the original image and uses sparse coding in combina-
tion with Adaboost. Among the advanced methods, [52] reports
the best results on this dataset. It uses a deep architecture that
stacks three layers, each one consisting of three steps: coding,
pooling and contrast normalization. Note that this deep archi-
tecture also makes use of color information. Our CSPS which
combines the SIFT and color information in the descriptors in
[52], outperforms that method with 15 and 30 training images.

Fig. 7. Samples of each class from Scene-15 dataset.

TABLE IV
CATEGORY-WISE ACCURACY (%) COMPARISON ON SCENE-15 DATASET

Class ScSPM [10] SP+RSC [56] CSPS + LLC CSPS+RSC

suburb 85.29 ± 1.42 89.55 ± 1.23 89.79 ± 0.95 93.55 ± 1.32
coast 90.53 ± 1.51 93.03 ± 1.47 92.15 ± 0.61 90.03 ± 1.31
forest 84.85 ± 0.91 97.67 ± 1.55 89.12 ± 1.30 91.67 ± 1.87
highway 86.25 ± 2.67 88.85 ± 2.18 90.12 ± 1.34 88.85 ± 2.18
insidecity 88.94 ± 1.16 89.50 ± 1.10 92.04 ± 1.43 94.50 ± 1.10
mountain 84.67 ± 2.70 85.67 ± 2.35 87.50 ± 2.96 87.61 ± 2.05
opencountry 74.19 ± 3.33 83.37 ± 0.50 86.03 ± 1.55 89.37 ± 0.72
street 84.63 ± 2.29 93.91 ± 2.07 92.79 ± 3.13 95.91 ± 1.31
tallbuilding 93.57 ± 0.35 98.52 ± 0.28 94.05 ± 0.33 96.52 ± 0.28
office 86.96 ± 2.25 86.45 ± 1.29 87.83 ± 2.84 88.45 ± 1.29
bedroom 67.24 ± 5.57 84.21 ± 2.54 88.35 ± 1.03 92.21 ± 2.14
industrial 56.40 ± 2.00 57.34 ± 3.07 76.25 ± 2.67 79.24 ± 1.07
kitchen 66.36 ± 3.44 69.83 ± 3.78 76.55 ± 2.54 82.83 ± 1.55
living room 62.43 ± 2.92 65.69 ± 2.38 78.02 ± 2.55 83.69 ± 2.38
store 69.77 ± 2.70 72.47 ± 1.96 84.53 ± 2.50 83.32 ± 1.05

Fig. 8. Samples of three categories (top to bottom: airport, deli, and mall)
from MIT-67 dataset.

B. Scene Classification

Scene-15 [5] dataset was built gradually.The initial eight
classes were collected by [53], and then five categories were
added by [54]. Finally, two additional categories were intro-
duced by [5]. Scene-15 dataset has 15 categories, including sub-
urb, coast, forest, highway, insidecity, mountain, opencountry,
street, tallbuilding, office, bedroom, industrial, kitchen, living
room and store. It contains 4482 gray-scale images in total. The
image resolution is approximately 250 × 300, and there are 210
to 410 images per category. Some samples are shown in Fig. 7.
In our experiments, we resize the images to have a minimum di-
mension of 256 pixels (while maintaining the aspect ratio). The
gray histogram features are extracted from each image region
[55]. Following the common settings on this dataset [10], we
randomly select 100 images per class as training data and use
the remaining images as test data.

As for the implementation details for this dataset, we use
a single SIFT descriptor, by densely extracting local patches
of 16 × 16 pixels computed over a grid with a spacing of



WANG et al.: CSPS: AN ADAPTIVE POOLING METHOD FOR IMAGE CLASSIFICATION 1007

TABLE V
CATEGORY-WISE ACCURACY (%) FOR CSPS, RBOW [58], DPM [57], AND GIST-COLOR [63] ON MIT-67 DATASET

Category CSPS RBoW DPM GC Category CSPS RBoW DPM GC Category CSPS RBoW DPM GC Category CSPS RBoW DPM GC

greenhouse 88 75 65 55 c. store 64 44 33 11 hos. room 44 40 5 15 lobby 25 10 30 30
buffet 87 65 75 50 c. room 63 56 22 28 subway 44 33 38 38 artstudio 23 15 5 10
i. subway 85 81 62 10 nursery 63 55 60 50 grocerystore 44 33 19 43 lab. wet 22 27 5 9
elevator 85 62 52 67 corridor 62 43 57 48 fastfoodrest 43 24 12 18 j. shop 22 0 5 5
clositer 83 80 90 80 garage 61 44 56 28 winecellar 42 29 14 43 deli 20 0 5 16
c.inside 82 74 63 74 auditorium 55 44 11 22 meeting r. 39 41 75 45 toystore 19 14 9 14
casino 81 47 32 32 tv studio 54 22 6 33 bathroom 39 33 50 33 o. room 18 5 5 26
inside bus 81 78 43 48 poolingside 53 10 0 55 d. office 37 48 24 33 shoeshop 18 21 16 11
bowling 79 85 35 45 stairscase 53 35 35 35 bakery 36 5 11 37 museum 18 39 13 4
pantry 78 55 75 40 r. kitchen 53 26 4 17 air. inside 36 20 5 5 gameroom 18 45 40 10
florist 78 84 79 63 library 52 50 0 35 ch. room 35 28 6 17 mall 18 25 25 20
stu. music 75 37 32 42 movie t. 52 55 45 25 living r. 35 5 20 10 warehouse 17 19 24 24
classroom 75 72 67 39 gym 51 28 22 11 bedroom 34 19 5 0 waiting r. 16 24 5 14
closet 73 61 44 50 kitchen 51 38 29 43 laundromat 32 36 45 18 bar 14 44 11 11
k. garden 70 40 15 25 videostore 50 41 18 18 prisoncell 30 45 40 35 office 14 10 10 10
concert h. 69 65 65 60 bookstore 48 30 45 20 locker r. 28 19 19 5 restaurant 13 10 5 0
trainstation 68 45 35 55 din. room 46 28 28 50 hairsalon 28 19 43 29

TABLE VI
CLASSIFICATION ACCURACY (%) ON MIT-67 DATASET

HOG 22.8 DPM+GIST-Color 39.0

GIST-Grayscale [53] 22.0 DPM +SPM 40.5
MM-Scene [53] 28.0 DPM + GIST-Color + SPM 43.1
SP [5] 34.4 RBoW [58] 37.9
GIST-Color + SPM 38.5 SPMSM [58] 44.0
ROI+GIST [13] 26.5 CSPS + Object Bank 38.9
DPM [57] 30.4 CSPS + ROI-GIST 41.2
CENTRIST [59] 36.9 CSPS + GIST-Grayscale 46.9
Object Bank [60] 37.6 CSPS + GIST-Color 52.5

8 pixels. We set the dictionary size to 1, 024 and the color
cluster parameter k in (4) to (5). We apply χ2 kernel for the
kernel K in (12). The tradeoff parameters to the sparsity reg-
ularization term and the SVM regularization term are chosen
via five-fold cross validation on the training data. We compare
our proposed pooling strategy CSPS with the original SP and
the state-of-the-art method from [56], and list the specific quan-
titative results and comparisons in Table IV. We can observe
that our CSPS achieves extremely high performance on scene
classification and outperforms ScSPM by nearly 10%. This is
probably because the scene images contain plentiful geomet-
ric properties across different categories, which benefits CSPS
when capturing adaptive spatial information. However, we no-
tice that SP + RSC [56] achieves better results in some classes
than CSPS, which is perhaps due to the discriminative power of
their feature codes on this data set. We then turn to employ their
feature coding strategy. By incorporating robust sparse cod-
ing (RSC), our method can obtain additional improvement of
about 5%.

MIT-67 [13] is a more challenging scene data set that includes
15 620 images of indoor scenes in 67 different categories. It con-
sists of different types of stores (e.g., bakery, grocery) residential
rooms (e.g., nursery room, bedroom), public spaces (e.g., inside
bus, library, prison cell), leisure places (e.g., buffet, fast food,
bar, movie theater) and working places (e.g., office, operating

Fig. 9. Samples learned by CSPS on MIT-67 dataset. (a) Bookstore. (b) Gym.
(c) TV studio. (d) Dining room.

room, tv studio). Some samples are shown in Fig. 8. Following
common settings on this dataset [13], we use 80 images per
class for training and 20 images per class for testing. Train/test
configuration files were provided by the authors of [13]. We
resize the images to have a maximum dimension of 400 pixels
(while maintaining the aspect ratio).

Many works [13], [57], [58] indicate that the popular SIFT de-
scriptors can not yield satisfactory performance on this dataset.
Thus, we evaluate the combination of our CSPS with four differ-
ent feature extraction implementations, i.e., Object Bank, ROI-
GIST, GIST-Grayscale and GIST-Color, and compare them with
the well-known methods including HOG, GIST, GIST-color,
SP, Object Bank, DPM, and several other recently published
methods. We list a very specific category-wise performance
comparison in Table V for further insight and discussion. The
average classification accuracy is shown in Table VI. We can
observe that our CSPS achieves the best performance on 51 cate-
gories out of the full 67 categories, compared using RBoW [58],
DPM [57], and Gist-color [57] with standard SPM. Unlike DPM
based methods, our method does not need to detect any specific
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Fig. 10. Calculation time and classification ability with different active sizes of fast learning on four datasets. (a) PASCAL VOC 2007. (b) Caltech-256.
(c) Scene-15. (d) MIT-67.

“objects” or “parts” explicitly, and its computational cost is ex-
tremely low. Finally, we show some typical learned CSPS results
from MIT-67 data set in Fig. 9. As the figure show, CSPS cap-
tures the most dominant spatial information and the captured
regions are compact yet discriminative.

C. Calculation Time

We evaluate the calculation time of the CSPSL procedure
in this part. Because the class-specific selection from an over-
complete basis is a computationally demanding task, our fast
learning technique in Section III-C plays an important role. The
key point during fast learning is the active size of the feature
set when iteratively selecting the features with the largest score
and updating the feature set. We report the calculation time and
the classification performance in Fig. 10 with different active
sizes of the feature set. The conclusions are as follows. In all
four data sets, the fast learning procedure can improve the cal-
culation time for CSPSL in Algorithm 1. When the active size
is small, we obtain better performance as the active size in-
creases. However, the classification ability begins to decrease
when the active size is larger than 120. In all four datasets,
accuracy peaks are obtained at approximately 120. One inter-
esting finding is that in Scene-15 dataset, the best classification
accuracy is obtained at 60. This result is perhaps because this
data set contains fewer categories and simpler images than the
other three data sets. As for the calculation time, in all data sets,
fast learning can helps reduced the learning calculation time
required for CSPS. Specifically, when the active size is fewer
than 100, CSPSL tends to improve as the active size increases,
but start to converge when the active size of the feature set is
larger than 100. Taking both classification ability and calcu-
lation time into account, we suggest setting the active size to
approximately 100.

V. CONCLUSION

In this paper, we propose a data-driven approach to adaptively
learn CSPS for image classification. In contrast to the standard
SP, which uses uniform spatial pooling shapes, our CSPS de-

termines adaptive and semantical spatial patterns for feature
pooling, which proves capable of capturing more class-specific
geometric information. Our method outperforms standard SP
and most other relevant works on four diverse datasets (PAS-
CAL 2007, Caltech-256, Scene-15 and MIT-67). The experi-
mental results show that it effectively captures valuable spatial
information for both object and scene images. In the future,
our study will concentrate primarily on the design of different
over-complete shape sets and faster solutions for CSPSL.
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