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Abstract—Video prediction is the challenging task of generating
the future frames of a video given a sequence of previously
observed frames. This task involves constructing of an internal
representation that accurately models the frame evolutions, in-
cluding contents and dynamics. Video prediction is considered
difficult due to the inherent compounding of errors in recursive
pixel level prediction. In this work, we present a novel video
prediction system that focuses on regions of interest (ROIs)
rather than the entire frames and learns frame evolutions at the
transformation level rather than at the pixel level. We provide two
strategies to generate high-quality ROIs that contains potential
moving visual cues. The frame evolutions are modeled with a
transformation generator that produces transformers and masks
simultaneously, which are then combined to generate the future
frame in a transformation-guided masking procedure. Compared
with recent approaches, our system is able to generate more
accurate predictions by modeling the visual evolutions at the
transformation level rather than at the pixel level. Focusing
on ROIs avoids heavy computational burden and enables our
system to generate high-quality long-term future frames without
severely amplified signal loss. Moreover, our system is able to
generate diverse plausible future frames, which is important in
many real-world scenarios. Furthermore, we enable our system
to perform video prediction conditioned on a single frame by
revising the transformation generator to produce motion-centric
transformers. We test our system on four datasets with different
experimental settings and demonstrate its advantages over recent
methods both quantitatively and qualitatively.

Keywords—Video prediction, diverse future frames, local trans-
formation level, transformation-guided masking, region of interest,
video prediction on single frame

I. INTRODUCTION

G IVEN the considerable progress in video recognition
[1] [2] [3] [4] [5] [6] [7] [8], prediction has become

an essential module for intelligent agents to plan actions or
to make decisions in real-world videos [9] [10] [11] [12].
This paper considers the task of video prediction, where the
goal is to generate future frames of a video based on the
sequential frames that have already been observed. Video
prediction has broad prospects in real-world scenarios, such as
robots planning, autonomous driving, and anomaly detection in
surveillance videos. Learning to predict future frames from a
video sequence involves constructing an internal representation
that models frame evolutions accurately, including contents
and dynamics. However, predicting realistic and sharp future
frames is a challenging task given the high dimensionality of
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Fig. 1. Video prediction at different visual levels, including global and local
levels, raw pixel level and our proposed transformation level. Our proposed
video prediction system is conducted at the local transformation level, which
is able to accurately model frame evolutions and perform long-term prediction.

the data, the complexity and ambiguity inherent in videos, and
the complex dynamics of the environment [13].

Traditional approaches for video prediction have used inde-
pendent component analysis, slow feature analysis, Boltzmann
machines, and Lie group theory. However, these techniques are
typically not suitable for scaling to high-resolution videos, and
they are not flexible enough for capturing the complexity of
real-world data. Another line of methods utilize optical flow to
model frame evolutions, which requires accurately capturing
the optical field [14] [15]. These methods are computationally
expensive, and more importantly, optical flow estimation has
inherent difficulties in accurately generating an entire frame.
This situation is severe when multiple future frames are needed
due to the amplified loss in recursive prediction.

Recent competitive approaches are often performed at the
pixel level and treat video prediction as a regression problem
with machine learning techniques, particularly techniques e-
quipped with successful deep neural networks [16] [17] [13]
[18] [9] [10] [11] [12]. However, in practice, these methods
often generate blurry predictions, especially in long-term future
frames. We attribute this result to two main reasons. First,
in most cases, making reasonable long-term frame predictions
in natural videos highly depends on observing the generated
frames in the past to make predictions further into the future.
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Pixel-level prediction makes it difficult for the models to learn
powerful internal representations because these approaches
need to be highly robust to pixel-level noise. This situation
becomes severe when the noise amplifies quickly through time
until it overwhelms the signal with which we are concerned.
Commonly, the first few prediction steps are of decent quality,
but then the prediction dramatically degrades until all the video
context is lost [13] [19]. Second, previous works often consider
frame evolutions at the global level. This setting brings com-
putational complexity especially in real high-resolution videos.
Besides, in most natural videos, motion signals are dense in
certain regions rather than being distributed over the entire
frame. Focusing on the entire frame brings computation bur-
den; moreover, it is not able to explicitly distinguish multiple
objects in a particular scene and extract an internal object-
centric representation. This may result in distinct objects in
the same scene being subject to the same motion [20].

In this paper, we propose a novel video prediction system
that achieves predicting future frames at the local transfor-
mation level. A schematic comparison of video prediction
works performed at different levels is presented in Fig. 1.
This setting helps us prevent the inherent compounding of
errors in recursive global pixel level prediction, especially
when we need to conduct iterative prediction for long-term
future frames based on previously generated frames. We show
how to focus on high-quality regions of interest (ROIs) with
two approaches (pyramid sampling and spatial-transformed
learning). The transformations for ROIs are learned with an
auto-encoder structure that is responsible for modeling their
visual evolutions by producing the transformers and masks,
which are then prepared for transformation-guided masking
procedure to generate future frames. Our transformation gen-
erator is governed by a recurrent neural network (RNN), which
is used to integrate the transformation patterns of each ROI and
determine the final choices of future frames.

To generate long-term future frames, we propose two s-
trategies: the first is to learn multiple stacked transformers
and masks to directly generate long-term future frames, and
the second is to conduct recursive prediction for each future
frame. Experiments suggest that both strategies can yield
promising results, thus demonstrating the advantages of our
method because most solutions performed at the global pixel
level can hardly generate high-quality long-term future frames
in a recursive manner. We impart our system with the ability
to generate diverse future frames with different transformation
generators through sampling latent variables combined with
input visual cues. Moreover, our system is able to generate
future frames from a single frame, which is very difficult.
We achieve this function by revising the transformation gen-
erator architecture with the ability to produce motion-centric
transformations, which can be used to form diverse multiple
frames with a single frame. Our system is an integrated and
flexible video prediction solution. We examine it with different
experimental settings on four datasets and demonstrate the
advantages over recent competitive methods both quantitatively
and qualitatively.

The remaining content is organized as follows. Section II
reviews related works and discuss the relations to our system.

Section III describes our video prediction system including its
key modules, future frame generation method, training strategy
and how to perform video prediction on single frame. The
experimental results and analysis are given in Section IV.
Finally, Section V concludes this paper.

II. RELATED WORKS

Video prediction is a subtask of video generation since it
can be viewed as video generation conditioned on previously
observed frames. However, video generation is more general
and can be conditioned on other types of data, even noise.
Meanwhile, video prediction has a true label that the predicted
frames should be close to in certain evaluation measurements,
whereas video generation often requires only the plausibility of
the generated video sequence. In this section, we mainly review
recent progress on video prediction. We also cover some works
of “learning diversity under uncertainty”, which is the situation
in our system that predicts diverse future frames of multiple
possibilities. There are other types of video prediction works
that focus on certain contents in videos (e.g. optical flow,
motion, human pose, and semantic activity), which are beyond
the scope of our paper and thus not covered.

Early work on video prediction focused on small patches
containing simple predictable motions [21] [22] [23] and mo-
tions in real videos [16] [18]. High-resolution videos contain
substantially more complicated motion that cannot be mod-
eled in a patch-wise manner due to the well-known aperture
problem, which causes blockiness in predictions as we move
forward in time. [16] attempted to overcome blockiness by
averaging over spatial displacements after predicting patches.
However, this approach does not work for long-term predic-
tions. Recent approaches in video prediction have moved from
predicting patches to full frame prediction. Recently, a line
of studies [11] [13] [24] [25] [26] focused on developing ad-
vanced networks to directly generate pixel values. In particular,
[17] proposed a network architecture for action conditioned
video prediction in Atari games. [13] proposed an adversarial
loss for video prediction and a multi-scale network architecture
that results in high-quality prediction for a few time steps in
natural video. [10] proposed a network architecture to directly
transform pixels from the current frame into the next frame
by predicting a distribution over pixel motion from previous
frames. [25] proposed a probabilistic model for predicting
the possible motions of a single input frame by training a
motion encoder in a variational auto-encoder approach. [24]
constructed a model that generates realistic-looking video by
separating background and foreground motion. [12] improved
the convolutional auto-encoder architecture by separating mo-
tion and content features. [11] built an architecture inspired
by the predictive coding concept in the neuroscience literature
that predicts realistic looking frames. However, these methods
often produce blurry predictions since modeling the complex
pixel-level distributions of natural images is difficult. Several
approaches [27] [28] [29] alleviated this blurring problem by
resorting to motion field prediction for copying pixels from
previous frames. [30] learned to explicitly enforce future frame
predictions to be consistent with the pixel-wise flows in the
video through a dual-learning mechanism.
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Most of the previously mentioned approaches attempt to
perform video generation in a global pixel-to-pixel process.
In contrast, we seek to learn frame evolutions at the local
transformation level from the past to the future. Prior works
have explored learning transformations in restricted domains
[10] [25], such as for robotic arms or clip art. We consider
different settings and perform long-term diverse predictions.
This paper is also related to learning to understand trans-
formations in images and videos [31] [32] [33] [34]. We
also study transformations, but we focus on learning the
transformations only for ROIs and design a transformation-
guided masking procedure to generate future frames. Learning
only local transformations helps us produce accurate long-term
predictions, even in a recursive manner.

Learning Diversity Under Uncertainty. Deep latent vari-
able models such as generative neural nets (GANs) and varia-
tional auto-encoders (VAEs) can be used to handle the inherent
uncertainty in future prediction tasks [35]. An interesting ap-
proach that uses GANs for unsupervised image representation
learning was simultaneously proposed in [36] and [37], where
the generative model is trained along with an inference model
that maps images to their latent representations. [24] used a
two-stream generative model: one stream generates a static
background, while the other stream generates a dynamic fore-
ground sequence that is pasted on the background. [38] used
similar ideas to develop an iterative image generation model
where objects are sequentially pasted on the image canvas
using a recurrent GAN. [25] predicted future frames from a
single frame based on VAEs. Similarly, [39] performed video
forecasting with VAEs, predicting feature point trajectories
from still images. Concurrent works from [25] and [10] applied
the learned kernels on input images to produce diverse futures.
In contrast, [14] predicted where pixels will move using direct
optical flow supervision from a single image. Our system
is also able to predict future video frames from a single
frame by revising the transformation generator architecture
with the ability to produce motion-centric transformations. We
achieve diversity generation by diversifying the transformation
generator through sampling latent variables, which receives
contributions from the specific distribution and input frame
sequence.

III. THE PROPOSED VIDEO PREDICTION SYSTEM

In this section, we introduce our video prediction system.
We first present a system overview, and then we detail the
key modules in our system and describe their relations and
interactions. We show how to generate transformations and
perform transformation-guided masking to generate future
frames. Finally, we present the training methods of our system
and demonstrate its ability to predict future frames conditioned
on a single frame.

A. Overview
The proposed system is shown in Fig. 2. Given an input

frame sequence (single frame situation is also allowed in our
system, as addressed in Section III-F), the goal of our system is
to predict diverse plausible future frames. We first perform a

process of generating ROIs generation that produces several
spatiotemporal regions containing potential motions. These
ROIs are sequentially sent to the transformation generator,
which is govern by an RNN. It is responsible for generat-
ing transformers and masks. In the next stage, the learned
transformers and the corresponding ROIs are sent to a merge
network to form transformed ROIs, which are prepared to be
combined with the learned masks to generate a candidate of
the next frame.

To produce multiple long-term future frames, the newly
generated frame is re-sent backwards in a recurrent manner
to apply the system recursively to synthesize further frames.
Because we model the pattern of input frame sequence at the
transformation level, the reconstruction loss will not amplify
in the procedure of long-term prediction. Another strategy is
to directly generate multiple sets of transformations to produce
long-term predictions at once.

Meanwhile, generating diverse future frames is achieved
with designed conditional codes applied to generate diverse
transformations. The conditional codes are learned from a
specific distribution (e.g., Gaussian distribution) along with the
input visual information of the original input frame sequences.

Finally, our system has the ability to predict diverse future
frames using one single frame, which is very difficult because
motion information that is easily mined in sequential frames
is not provided in a single frame. The key idea behind our
solution is to adapt the merge network to perform volumetric
convolutions with a single frame to form diverse frame se-
quences. In the following, we detail the key modules of our
system, describe how to perform video prediction, and show
the training methods.

B. ROI Generation
Due to the inherent compounding of errors in recursive

pixel-level prediction, we choose to perform video prediction
at the transformation level. However, learning the transforma-
tion of the entire frame sequence is difficult. We prefer to
concentrate our transformation learning in ROIs where motions
have a high probability of occurrence. To generate high-quality
ROIs, we introduce two methods: a pyramid sampling method
and spatial-transform learning method.

Pyramid Sampling. Inspired by spatial pyramid pooling
[40] and its recent variants [41] for visual recognition, we
introduce a pyramid sampling method to detect the ROIs that
may contain key objects with crucial motion information. As
shown in Fig 3, at the first level of the pyramid, each input
frame in the sequence is split into S×S bins (bins can overlap
with adjacent bins by specifying a stride). All 2× 2 bins from
the first level are then combined as a larger bin at the second
level. In this way, the top pyramid level has a single bin that
covers the entire input frames. The magnitude of the motion
information for the ith bin at level l can then be defined as f li .
The T bins with top scores (using f li as score) will be selected
as the ROIs. Here, we use the l2 differences between the voxels
of all frame patches in the same bin to evaluate f li (take the
average for grids in the bin), which outperforms conventional
descriptors such as histogram of gradients (HOG) according
to our experiments.
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Fig. 2. Illustration of the proposed video prediction system. The input frame sequence is first sent to the ROI generator to obtain several ROIs, which sequentially
act as input to the generator that is responsible for generating transformers and masks. The transformers model the visual evolution of each ROI while the masks
preserve the generation rules. These two parts are combined with the original ROI to generate a candidate of the next frame. The final choice is determined
when the transformation generator processes all ROIs and stops, governed by an RNN controller. To produce multiple long-term future frames, the first solution
is to directly generate multiple frames with multiple sets of transformations, and the second is recursive implementation performed on each future frame. Both
are tested and shown to yield promising results. Diverse generation is achieved with designed conditional codes applied to generate diverse transformations
and masks. The conditional codes are learned from specific distribution along with visual cues of the input frame sequence. Our system is also able to predict
future frames using a single frame, where the key idea is to revise the transformation generator to produce motion-centric transformers, equipped with the first
long-term prediction method as discussed in Section III-F.

The most prominent advantage of the pyramid attention
method is that the key object with dense motion information
around it may be selected in multiple bins of different levels.
This allows the attention controller to focus on the same object
at multiple scales, which can help to learn a more represen-
tative transformation. Moreover, pyramid attention provides a
more flexible approach to most existing attention methods that
choose fixed scales manually [42].

Spatial-Transform Learning. The other attention mech-
anism that we use is inspired by recently proposed spatial
transformer [32] [43], which is a powerful and general method
that can provide invariance to the shapes and sizes of objects
in the image. The spatial transformer (ST) operates on an
arbitrary input image or feature map f using parameter θ to
generate an output

ST(f, θ) = [κh(θ)⊗ κw(θ)] ∗ f, (1)

where κh and κw are 1-dimensional kernels, and ⊗ and ∗ are
outer-product and convolution respectively.

A spatial transformer can be flexibly inserted into an existing
network when it requires an attention mechanism. Meanwhile,
it could be directly trained with back-propagation, without
turning to reinforcement learning for help as performed in
most attention-based approaches [42] [44]. To automatically
learn to focus on multiple discriminative object patches of
the input video frames, spatial-transform attention applies a
spatial transformer at each time step. Following the original ST
work [32], all these transformers at different time steps share a
single localization network to predict multiple transformation
parameters θ as shown in Fig. 3.

C. Transformation Generator

Once the ROIs are obtained, we use them to generate
future frames. However, simply modeling visual evolutions at
the pixel level suffers from inherent compounding errors and
is difficult to be applied for long-term frame generation. In
practice, we choose to model the visual evolution trajectory
of ROIs at the transformation level. We expect to learn a
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Fig. 3. Two methods used to generate ROIs: (a) Pyramid sampling. The
first image shows the l2 difference for each bin at level 1. The next three
images illustrate three levels of the pyramid. (b) Spatial-transform learning.
The multi-stream architecture is able to focus on multiple key object patches.
For simplicity, we only show the top two most possible regions where motion
occurs.

high-level pattern in the frame sequence to perform video
prediction. Specifically, we represent such a pattern with two
parts, which we show are suitable to generate future frames.
The first one is called the transformer, which is used to
synthesize transformed ROIs that model the changed contents
while preserving unchanged background. The other is called
the mask, which stores the generation rule of how the next
frame is formed with the original frames and the transformed
ROIs.

To achieve this, we design the transformation generator
with an encoder-decoder network. We expect that the ideal
structure can simultaneously produce transformer and mask. In
particular, the encoder-decoder structure enjoys the advantage
that the output can be of the same size as input, acting as the
mask. Meanwhile, the learned codes in the middle preserve
higher level abstraction of the input data, which in our situation
can be used as the transformer.

Concretely, for the first ROI, the transformation network
first generates N transformers from the middle of the encoder-
decoder network. These transformers can be viewed as convo-
lutional kernels and are then applied to each ROI to produce
N transformed ROIs for the next frame. Note that these
transformed ROIs are of the same size as the input ROI. Then,
all these transformed ROIs are combined with the original
input frame sequence to generated the next frame candidate.
This procedure is called transformation-guided masking and is
presented in Section III-C. To leverage the sequential infor-
mation of different ROIs, we establish an RNN to govern the
transformation generator. At each time step t, the generation
procedure for the next frame candidate is the same as the first
ROI, except that the next frame candidate generated in the
last time step is also used in the current transformation-guided
masking procedure, which acts as additional information to
generate the next candidate of the next frame. Finally, the next
frame candidate of the last ROI in the last time step is the final
choice of the next frame.

D. Predicting Future Frames
In this subsection, we detail how to form the next frame

candidate given the previously learned transformer and mask
and determine the final choice of the next frame. Then, we
show how our system can be extended to generate long-term
future frames with diversity.

Transformation-Guided Masking. The next frame genera-
tion is implemented with the proposed transformation-guided
masking procedure. At each RNN time step, the multiple
transformers are combined with input ROIs with a merge
network using convolution computations to generate a stack of
transformed ROIs, which records different patterns of frame
evolutions. The mask stores the generation rule to form the
next frame with the transformed ROIs and the next frame
candidate generated in the last time step. In more detail, at
time step t, the current predicted candidate of next frame pt
is formulated as

pt = m0
t � pt−1 +

N∑
i=1

mi
t � (kit, r

n
t ), (2)

where m0
t is the mask for the next frame candidate generated

in the last time step, mi
t is the mask for each transformed

ROI, � is element-wise multiplication, (kit, r
n
t ) indicates the

transformed ROIs obtained by applying convolutional kernel
kit at every position of the ROI rnt , and p0 is the input frame
sequence. In particular, we perform channel-wise softmax to
ensure that the masks sum to 1 at each pixel.

The first term uses the last generated next frame candidate,
which contains the transformation information of all previous
ROIs. This part preserves global contents, including moving
objects and background. The second term addresses the current
ROI with each learned transformer, which records how each
ROI evolves from the past to the future in previously observed
frames. Masks are generation rules used to integrate trans-
formed ROIs with original frames to generate future frames.
We use the frame generated at the last time step as the final
prediction of the next frame.

Long-term Prediction. We design two methods to achieve
long-term prediction. The first is to learn multiple stacked
transformers and masks in the transformation generator, and
directly generate multiple future frames with them. This ap-
proach can use the full potential of our structure since local
transformation is easy to learn, even in a long trajectory.
The second choice is the recursive implementation, which
applies the procedures of ROI generation and transforma-
tion generation for each generated future frame recursively.
This type of implementation is widely used in recent video
prediction approaches. However, the difference between our
situation with others is that the recursive prediction of local
regions suffers less from intermediate blurry results and loss
amplification and can thus model long-term transformation
patterns. Experiments suggest both can yield promising results,
which demonstrate the advantages of our method because most
global pixel-level solutions can hardly generate high-quality
long-term future frames in a recursive manner.

Predicting Diverse Future Frames. To generate diverse
future frames, the key idea behind our system is to sample dif-
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ferent transformation generators to produce multiple plausible
transformations and masks. To achieve this, we use a popular s-
trategy in the GAN community that introduces a latent variable
that follows a specific distribution (e.g. Gaussian Distribution).
This latent variable is then sent to conditional code generator
with input frame sequence to obtain conditional codes. These
codes preserve the visual information of the original inputs
and can thus be used to revise the transformation generator
through sampling different latent variables.

By sampling different condition codes, our transformation
generator is able to generate diverse patterns of how frame
evolutions can be modeled. In practice, we choose to place
the conditional codes with the controller RNN that governs
the transformation generator. In this way, the conditional code
generator can be trained with the transformation generator in
an end-to-end manner as follows.

E. Training Method
Since our system is end-to-end, we use three types of loss to

train our system: l2 loss between predicted frames and ground
truth, gradient difference loss (GDL) and adversarial loss. The
first two losses are easy to implement. We mainly address how
to design adversarial loss in our training method.

Standard GAN trains two adversarial models simultane-
ously: a generator G that captures the data distribution and
a discriminator D that distinguishes between fake samples
drawn from G and real samples coming from the training data.
As suggested in [13], an adversarial loss can address blurry
predictions caused by l2 loss. For a specific input sequence, if
our model can produces the future frames p and p′ with equal
probability, then the value pavg = (p+p′)/2 will minimize the
l2 loss over the data, even if pavg is not the expected future
frame. Thus, we decide to add adversarial loss in our training
method.

Specifically, we denote y as the predicted future frame, and
R = {R1, R2, ..., RT } as the ROIs. Training D requires
keeping the weights of G fixed and classifying D(y) into label
1 while classifying D(G(Rt)) into label 0. Therefore, the loss
function of D can be defined as

LD
adv(R, y) =

T∑
t=1

Lbce(D(y), 1) + Lbce(D(G(Rt)), 0), (3)

where Lbce is the binary cross-entropy loss defined as

Lbce(Y, Y
′) = −

∑
i

(Y ′i log(Yi) + (1− Y ′i ) log(1− Yi)) (4)

where Yi takes its values in {0, 1} and Y ′i in [0, 1].
Training G requires keeping the weights of D fixed, and

confusing D to classify the fake samples G(Rt) into label 1.
We formulate the loss function of G as follows

LG
adv(R, y) =

T∑
t=1

Lbce(D(G(Rt)), 1). (5)

Minimizing this loss means that the generative model G
makes the discriminative model D as confused as possible in
the sense that D will not discriminate the prediction correctly.

Finally, we combine the three losses with different weights
as

L(R, y) = λadvLG
adv(R, y) + λl2Ll2(R, y) + λgdlLgdl(R, y)

(6)
where there is a tradeoff to adjust, by means of the three λ
parameters, among sharp predictions due to the adversarial
principle, similarity with the ground truth, and the image
gradient predictions. In practice, we determine them through
a grid search experiment.

F. Standing on Single Frame

Finally, we show that our system is able to generate fu-
ture frames conditioned on a single frame. Compared with
a consecutive frame sequence, a single frame encodes less
motion information and has a higher possibility of evolving
into diverse future frames. In our proposed two strategies
for long-term generation, the first one (generating multiple
stacked transformations) is suitable for this situation because
the iterative prediction is hard to capture meaningful motion
pattern due to the limited input signal. However, multiple sets
of transformations can occasionally produce plausible future
frame sequences because they are trained with real videos with
adversarial loss.

In practice, we choose to generate multiple transformers and
masks at once and directly produce multiple future frames. In
our experiments, we find that simply using the same networks
as when the frame sequence is input can result in blurry
predictions, which we attribute to a single frame containing
less motion information and consequently affecting the quality
of transformers and masks. To solve this problem, we use
deeper networks for the condition code generator. We expect to
mine more information from the input frame and consequently
learn a more plausible and potential transformation that exists
in the original input single frame. The specific configurations
are given in the experimental part regarding the setting of video
prediction on a single frame.

IV. EXPERIMENTS

A. Datasets

The 2D Shape dataset [25] consists of synthetic 2D shape
RGB videos. There are only three types of objects in this
dataset moving horizontally, vertically or diagonally with ran-
dom velocity. All three objects are simple 2D shapes: circles,
squares, and triangles. The original dataset only contains image
pairs that have 2 consecutive frames. We extrapolate it to
convert image pairs into video clips that have 5 frames. We use
20, 000 clips for training and 500 for testing as in the original
work [25].

The Moving MNIST dataset [18] consists of videos where
two MNIST digits move in random directions with constant
speed inside a 64× 64 frame. The 64, 000 training video clips
and 320 testing clips are generated on-the-fly. We use the code
provided by [18] to generate 100, 000 training sequences to
train our model, and we test it on the test set, which contains
10, 000 sequences. Each video clip consists of 5 frames.



1051-8215 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2018.2882061, IEEE
Transactions on Circuits and Systems for Video Technology

7

The UCF101 dataset [45] contains 13, 320 videos belonging
to 101 action categories. The videos have a resolution of
240 × 320 and were sampled at 30 frames per second. Most
frames in this dataset only have a very small portion of the
image actually moving. In our experiments, we train our model
directly on this difficult dataset and report our results on a
subset of 378 test videos from UCF101.

The THUMOS15 test set [46] consists of over 5, 600 tem-
porally untrimmed videos. The UCF101 dataset is the training
dataset for the THUMOS challenge, and thus THUMOS is a
relevant choice for the testing set.

The CalTech Pedestrian dataset [47] consists of videos from
a dashboard-mounted camera on a vehicle driving around Los
Angeles. Testing sequences were made to match the frame
rate of the THUMOS15 and cropped to 128 × 160 pixels.
Quantitative evaluation was performed on the entire CalTech
test partition, split into sequences of 10 frames.

B. Experimental Setup and Evaluation Metrics

Our video prediction system is flexible, as discussed previ-
ously; thus we consider three experimental settings to evaluate
its performance on different datasets, as follows.
• Standard video prediction: Given an observed sequence

of frames as input, the system is asked to predict the next
frame and future frames of several steps. In practice,
we condition generation on 4 observed ground truth
frames and we predict the following 1, 4 and 8 frames.
Following [13] and [27], we train models on the generic
consumer videos from UCF101, and we evaluate on the
UCF101 and THUMOS15 test sets for comparison with
recent approaches. This part is examined on the Moving
MNIST for ablation experiments.

• Diverse video prediction: The input is the same as above,
but the output is required to be diverse and plausible,
compared to the ground truth and plausibility. In detail,
we condition generation on 4 observed frames and we
predict 5 types of the following 8 frames. We experiment
with this setting on the Moving MNIST dataset.

• Video prediction on single frame: Based on the second
setting, the input is a single frame rather than 4 frames.
This setting is examined on the 2D Shape dataset.

For the evaluation metrics, for the first setting, we employ
the widely used Peak Signal to Noise Ratio (PSNR) and
Structural Similarity Index Measure (SSIM) [48]. PSNR is
commonly used to measure the quality of reconstruction, and
SSIM is a popular method for predicting the perceived quality
of images. A larger score is better for both PSNR and SSIM.

For the other two settings, since there are no general
evaluation metrics for this diverse prediction due to the only
one ground truth (existing evaluation metrics are designed in
method oriented such as [39] [25]), we use three evaluation
metrics. The first two metrics are PSNR and SSIM. The third is
a non-reference measurement, i.e., a recently proposed relative
image quality assessment (RIQA) [35], which is based on
the popular blind image quality assessment (BIQA) method
BRISQUE [49]. RIQA calculates the decreasing proportion of

quality score between inputs and outputs, defined as

RIQA =
BRISQUE(Input) - BRISQUE(Output)

BRISQUE(Input)
(7)

where BRISQUE(Output) is the average BRISQUE of all
the predicted future frames. We believe that RIQA is fair
and reasonable because it reflects the plausibility of predicted
frames in terms of both continuity and consistency.

C. Implementation Details
The major implementations of our system, including ROI

generation (spatial-transform learning), transformation genera-
tion that is governed by an RNN architecture, discriminator and
the adversarial training, are all derived from the TensorFlow
platform [50]. We use one Tesla K80 GPU to accelerate the
procedure of training and testing. For 2D Shape and Moving
MNIST, all input images are resized to 32× 32, and the size
of each ROI is 16 × 16. For UCF101, the input images are
resized to 64 × 64 with an ROI size of 32 × 32. When the
pyramid sampling strategy is applied for ROI generation, each
input image is split into 3×3 grids for 2D Shape and Moving
MNIST, and 4×4 grids for UCF101. The core transformation
generator is constructed in an auto-encoder that includes 3
convolutional layers and 3 deconvolutional layers. For spatial-
transform learning, we constrain the size of the attention
window to be 16 × 16 for 2D Shape and Moving MNIST
and 32 × 32 for UCF101. Rather than using more advanced
LSTMs, we employ the standard RNN structure to govern
the transformation generator. Specifically, the current hidden
state ht is computed as the sum of the encoder output and
the output of convolving the previous state ht−1. All encoder-
decoders share parameters at different RNN steps. Throughout
our experiments, we fix the RNN to observe 5 ROIs (T = 5)
for each sample. The number of transformers N is set to
6. The discriminator D is constructed by 4 spatiotemporal
convolutional layers followed by 2 fully connected layers.
Our system takes approximately 100ms to predict one future
frame and flow given a sequence of 4 previous frames on the
UCF101 dataset. From diverse future frame prediction, we use
standard Gaussian distribution to generate the latent variables.
The conditional codes are obtained from the input frames using
a two fully connected layers.

D. Ablation Experiments
We first conduct several experiments to examine some typi-

cal architectural variants of our system on the Moving MNIST
dataset. Then, we study the impacts of different designs to
verify our concept and investigate the optimal architecture.
Keeping the main framework fixed, we experiment on 6 system
structures as follows
• GT: Learning transformations at the global level without

ROI generation, which observes the entire frames 5
times and merges the generated frames into an integrated
one.

• LT-FixedROI-Parallel: Learning local transformation
network that observes 5 fixed locations in parallel, which
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TABLE I. COMPARISON OF PSNR AND SSIM RESULTS FOR 5
VARIANTS OF OUR ARCHITECTURE FOR NEXT FRAME PREDICTION ON THE

MOVING MNIST TEST DATASET.

Model PSNR SSIM
GT 21.0 0.88

LT-FixedROI-Parallel 22.4 0.89
LT-FixedROI-RNNSerial 25.6 0.90

LT-MaskCNNROI-RNNSerial 22.7 0.89
LT-PyramidROI-RNNSerial 28.4 0.91

LT-STLROI-RNNSerial 27.7 0.93

TABLE II. COMPARISON OF AVERAGE PSNR AND SSIM RESULTS FOR
LONG-TERM PREDICTION ON THE MOVING MNIST TEST DATASET USING

THE LT-PYRMAIDROI-RNNSERIAL CONFIGURATION.

Model PSNR SSIM
Recursive Prediction 4 25.6 0.90

Long-Term Transformation 4 25.9 0.91
Recursive Prediction 8 23.1 0.89

Long-Term Transformation 8 22.4 0.88

means directly learning transformation for each ROI and
merging them into a future frame.

• LT-FixedROI-RNNSerial: Learning local transformation
network that observes 5 fixed locations in serial gov-
erned by an RNN.

• LT-MaskCNNROI-RNNSerial: Learning local transfor-
mation network that observes 5 locations in serial with
the boxes that contains the masks from Mask RCNN
[51].

• LT-PyramidROI-RNNSerial: Learning local transforma-
tion network that observes 5 locations in serial with
pyramid sampling.

• LT-STLROI-RNNSerial: Learning local transformation
network that observes 5 locations in serial with spatial
transformer learning.

Table I reports the results of the above variants on the
Moving MNIST test set. We find that methods using ROI
generation can outperform the global transformation model,
which illustrates that learning local transformations can de-
scribe object movement more accurately. Additionally, the LT-
FixedROI-RNNSerial model formulated as a recurrent network
achieves better performance than its parallel counterpart LT-
FixedROI-Parallel, since internal representations encoded from
previous patches can provide auxiliary information for cur-
rent step. Compared with learning transformations at fixed
locations, models with our proposed ROI generation strate-
gies (LT-FixedROI-RNNSerial and LT-STLROI-RNNSerial)
can achieve better PSNR and SSIM results. This result suggests
that attending to patches that contain dense motion information
and converting objects step by step is a practical way to
improve performance for video prediction. We also examine
a method using the ROIs generated from Mask RCNN [51],
where the masks of arbitrary-size are resized as ROIs to match
Eq. 2. The result in Table I suggests that this method produces
is worse than other choices in terms of video prediction quality.

Fig. 4. PSNR and generator losses using different numbers (T ) of RNN
steps. With increasing training iterations, the PSNR increases and the G-loss
gradually decreases. When T = 5, the model achieves the best performance.

Fig. 5. Examples on the Moving MNIST dataset using LT-PyramidROI-
RNNSerial (left) and LT-STLROI-RNNSerial (right).

In addition, we explore the impact of the number T of RNN
steps in serial implementations. We conduct experiments for
T = 3, 4, 5, 6 based on the LT-STLROI-RNNSerial model,
with 100k training iterations. As shown in Fig. 4, during the
training procedure, the model achieves the best performance
in terms of PSNR and generator loss when T = 5.

For long-term prediction, we examine two types of strategies
as addressed in Section III-C, where Recursive Prediction
indicates recursive implementation using previously generated
frame as the current input, while Long-term Transformation
denotes directly learning multiple transformers and masks at
one time and using them to form long-term future frames.
The results are listed in Table II under two settings (predicting
4 and 8 future frames), where the results show that both
strategies can yield similar performance. Fig. 5 demonstrates
some generated frames (output 4 frames given 4 input frames)
of LT-FixedROI-RNNSerial and LT-STLROI-RNNSerial on
the Moving MNIST test set. Referring to the ground truth,
the figure clearly indicates that our model can well predict the
movement for different digits in the future frames.

E. Standard Video Prediction
Given the results from the previous ablation experiments,

we use LT-FixedROI-RNNSerial and LT-STLROI-RNNSerial
as our competitive models to compare with other approaches
for standard video prediction including next frame prediction
and long-term prediction. We mainly evaluate and compare
with several models: a baseline that merely copies the last
frame used for conditioning; a baseline method that estimates
optical flow [52] from two consecutive frames and extrapolates
flow in subsequent frames under the assumption of constant
flow speed; an adversarially trained multi-scale CNN [13],
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TABLE III. PERFORMANCE COMPARISON OF NEXT FRAME
PREDICTION ON UCF101 AND THUMOS15 DATASETS.

Method
UCF101 THUMOS15

PSNR SSIM PSNR SSIM
Last Frame 28.2 0.89 27.8 0.87

Optical Flow [52] 28.2 0.89 27.8 0.87
BeyondMSE [13] 28.2 0.89 27.8 0.87

EpicFlow [53] 29.1 0.91 28.6 0.89
DVF [27] 29.6 0.92 29.3 0.91

Nextflow [28] 29.9 - - -
Dual Motion GAN [30] 30.5 0.94 30.1 0.92

LT-FixedROI-RNNSerial (Ours) 32.9 0.92 33.2 0.93
LT-STLROI-RNNSerial (Ours) 33.1 0.93 32.4 0.92

TABLE IV. PERFORMANCE (MSE AND SSIM) OF VIDEO FRAME
PREDICTION ON CALTECH AND YOUTUBE CLIPS AFTER TRAINING ON

KITTI DATASET.

Method
UCF101 YouTube Clip

MSE SSIM MSE SSIM
Last Frame 0.007985 0.762 0.01521 0.785

Optical Flow [52] 0.00628 0.789 0.01019 0.807
BeyondMSE [13] 0.00326 0.881 0.00853 0.820

PredNet [11] 0.00313 0.884 0.00679 0.858
Dual Motion GAN [30] 0.00241 0.899 0.00558 0.870

LT-FixedROI-RNNSerial (Ours) 0.00319 0.902 0.00551 0.889
LT-STLROI-RNNSerial (Ours) 0.00235 0.918 0.00506 0.893

several optical-flow-based methods extrapolate future frames
by predicting intermediate flows including EpicFlow [53],
deep voxel flow (DVF) [27], and Nextflow [28], a pixel-
motion combined method Dual Motion GAN [30], and a
transformation-based model [34].

UCF101 and THUMOS15 Table III shows the performance
comparison on UCF101 and THUMOS15 in terms of PSNR
and SSIM. As shown, our two methods achieve better results
than other approaches in most cases, except on THUMOS15
regarding the SSIM measurement, where Dual Motion GAN is
approximately 2% better than ours. Compared with the popular
multi-scale CNN model, which needs to design generators
and discriminators for each scale, our model is more flexible
and lighter to deploy since all encoders and decoders in
different RNN steps for each ROI share the same structures
and parameters in our transformation generator. Note that
the transformation-based model [34] did not provide all their
generated images or the PSNR and SSIM results, we use their
published examples to perform comparisons.

To provide more analysis with the transformation-based
model [34] which also performs prediction at the transfor-
mation level, we present the qualitative comparison in Fig.
6. As shown, their model can produce sharper future frames,
but it occasionally predicts multiple motions for the same
object or fails to characterize motions for different objects.
We draw the difference frames in Fig. 7 where we can see
that the body of one basketball player from their predictions
moves toward different directions, but this is not the case
in reality. In contrast, our system can well capture motion
information from different objects and predict how they move

Fig. 6. Comparison of the predictions between transformation-based model
[34] and our LT-STLROI-RNNSerial. The green arrows in the images indicate
the realistic movement direction while red arrows indicate wrong prediction
of the movement.

Fig. 7. Comparison of the difference images in Fig. 6 (bottom is ours while
upper is the transformation-based model [34]). We can observe the movement
trend for each basketball player more clearly in this way. The red box indicates
the region that does not move correctly.

next. This is attributed to the iterative procedure of attending
and transferring each ROI.

KITTI and Caltech Pedestrian. We also conduct video
prediction experiments on a more challenging dataset, i.e.
Caltech Pedestrian dataset. We evaluate the video prediction
capabilities of our model on complex real-world sequences.
Following the state-of-the-art PredNet [11] and MotionGAN
[30], the models are trained using raw videos from the KITTI
dataset [54] and evaluated on the test partition of the Caltech
Pedestrian dataset [47]. We follow PredNets [11] procedure
for training and validation, sampling 10 sequential frames
from each video in the City, Residential, and Road categories,
resulting in roughly 41k frames for the training set. In order
to further validate our models generalization capability, we
evaluate the trained model on 500 raw 1-minute clips from
YouTube, collected using the keywords “dashboard videos”,
following the setting of Dual Motion GAN [30]. Fig. 9
demonstrates the training procedure of our method, where we
can see a clear convergence at around 15000 training iterations.

Table IV reports the quantitative comparison with the state-
of-the-art models BeyondMSE [13], PredNet [11] and Mo-
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Fig. 8. Visualization of the intermediate outputs on UCF101 (test set).

Fig. 9. Training procedure of our method on KITTI (MSE loss) and Caltech
Pedestrian (SSIM) dataset.

tionGAN [30] on the video next-frame prediction task. We
obtain the results of BeyondMSE [13] by training a model
that minimizes the loss functions including adversarial loss and
gradient descent loss, and replaces the backbone network with
our frame generator, except for the motion autoencoder. Our
model significantly outperforms two baselines, achieving MSE
of 2.35× 10−3 and SSIM of 0.899, compared to 2.41× 10−3

and 0.899 of Dual Motion GAN [30], 3.13× 10−3 and 0.884
of Prednet [11], and 3.26 × 10−3 and 0.881 of BeyondMSE.
We show qualitative comparisons on the Caltech Pedestrian
dataset in Figure 5. In Figure 10, the model is able to predict
the motions of two vehicles and their shadows as they approach
from different directions, as well as handle the stationary
vehicle.

Computational time. Since Moreover, another key insight
about the usage of transformation level prediction is to reduce
the computation cost of calculating entire frame prediction
as baseline. Could authors add some computation comparison
with baselines or the method variant? My concern is that the
framework tries to transform multiple ROIs and thus needs to
run generators and RNN controller multiple times. It is not
sure whether this local procedure is faster than entire-frame
ways. Table V shows the computational cost to predict the next
frame in the test stage. We compare four optical-based methods

Fig. 10. Qualitative comparisons with PredNet [11] and Dual Motion GAN
[30] for next-frame prediction on car-cam videos from the Caltech dataset.

including Optical Flow [52] Nextflow [28] EpicFlow [53] and
DVF [27], and three global-level prediction methods using
deep neural networks, i.e., Beyond MSE [13], PredNet [11]
and Dual Motion GAN [30]. The results show that our method
can produce competitive next frame with faster execution time
than most of the optical-flow-based methods and global-level
methods.

Predicting multiple future frames. To predict multiple
frames, we presented two type of implementations as addressed
in Section III-D denoted as Recursive Prediction and Long-
Term Transformation, respectively. [11] and [13] stated that
recursive video prediction methods tend to perform poorly
when predicting long-term frames, as deviations of the predic-
tions unavoidably accumulate over time. However, as shown
in Fig. 11, our system can surprisingly conduct good recur-
sive prediction. Additionally, our Long-Term Transformation
implementation that directly learns diverse transformations to
generate multiple possibilities also provides promising results.
In detail, both implementations of our system can achieve at
least a 3% improvement over other methods, including multi-
CNN [13], convolutional LSTM [55], and MCNet [12]. Fig. 10
shows a typical example of predicting multiple frames using
PredNet, Dual Motion GAN and our method (LT-STLROI-
RNNSerial). We can observe that our method can accurately
predict the motions of two vehicles.

F. Predicting Diverse Future Frames

For diverse generation of future frames, we condition gen-
eration on 4 observed frames and we predict 5 types of the
following 8 frames. We experiment with this setting on the
Moving MNIST dataset. PSNR, SSIM and RIQA are used to
evaluate the generated frames. PSNR and SSIM measure the
distance between the generated frames and the ground truth,
while RIQA judges the plausibility of the generated frames
in terms of the continuity and consistency, compared with the
input frames. We expect that the diverse generations resemble
the ground truth or evolve smoothly.
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TABLE V. COMPUTATIONAL TIME (MS) TO PREDICT THE NEXT FRAME
IN THE TEST STAGE ON THE UCF101 DATASET.

Methods Time (ms) PSNR SSIM
Optical Flow [52] 245.2 28.2 0.89

Nextflow [28] 179.1 29.9 0.89
EpicFlow [53] 162.6 29.1 0.91

DVF [27] 194.5 29.6 0.92
Beyond MSE [13] 185.1 28.2 0.89

PredNet [11] 93.1 30.1 0.92
Dual Motion GAN [30] 80.5 30.5 0.94

LT-STLROI-RNNSerial (Ours) 98.3 33.1 0.93

Fig. 11. Quantitative comparison for long-term video prediction. Given 4
input frames, these models predict 8 frames recursively except our Long-Term
Transformation which directly generates 8 frames. Ours1 and Ours2 indicate
Recursive Prediction and Long-Term Transformation, respectively.

We compare our model against popular multi-CNN [13],
and two probabilistic models, i.e., visual dynamics [25] and
conditional VAEs [39]. Since they did not provide experimental
results on Moving MNIST, we reimplement their methods.
In particular, for multi-CNN, we obtain their predictions at
5 levels to represent 5 diverse future frames. As shown in
Table VI, our model again shows better performance in terms
of all three metrics compared to the other methods. From the
experiments, we find that their methods can produce better
single instance than ours, but their average scores of all 5
diverse future frames are lower than ours. This phenomenon
indicates that our system can learn multiple plausible trans-
formation patterns in the consecutive frames. We also provide
some qualitative results on the UCF101 dataset in Fig. 12,
which shows that our method can generate diverse plausible
future frames for real-world videos.

G. Video Prediction on Single Frame

Finally, we test a more difficult setting: taking only a
single frame as input. We experiment with our framework
using the synthetic 2D Shapes dataset [25]. We compare
with existing works that can generate future frames on single
frame: Visual Dynamics [25], Dense Optical Flow [14], and
a transformation-based method [34]. We also set a baseline
where the transformation generator in our system is replaced
by a standard generator that directly outputs flattened pixels.

Table VII presents the detailed performance comparisons.
As shown, our framework outperforms the baseline, suggesting
that the architecture of our framework is reasonable. In addi-
tion, we observe that our system and [34] produce frames with

TABLE VI. AVERAGE SCORES OF PSNR, SSIM AND RIQA FOR
DIVERSE GENERATION (5 TYPES OF FUTURE FRAMES).

Methods PSNR SSIM RIQA
Beyond MSE [13] 17.1 87.3 12.4

Visual Dynamics [25] 16.6 86.9 9.6
Conditional VAEs [39] 19.5 86.2 10.8

Ours 21.3 88.3 6.9

Fig. 12. Sixteen Examples of 3 diverse (one type for one row) video
predictions (5 frames from left to right) on the UCF101 dataset .

better qualities than others, which indicates the advantages
of learning transformations between frames. However, our
system is better than [34] in terms of both PSNR and SSIM,
which is perhaps due to our condition codes preserving visual
information of the input frame. Note that [34] yields an RIQA
that is approximately 1.5% better than ours.

Multiple results are shown in Fig. 13. It is clear that different
condition codes lead to different imaginary videos with the
same input image. The motions in those videos are notably
dissimilar. Figs. 13 (a) and (b) present a perception comparison
among our framework and the baseline where both are trained
in the same iteration. As show, generation from the baseline
leads to blur because of the intrinsic ambiguity of the image.
Fig. 13 (c) shows two sampled difference frames with different
condition codes, which indicates that our system can learn
multiple transformations with different latent variables.

V. CONCLUSION

In this work, we have presented a flexible and power-
ful video prediction system. Unlike popular video prediction
methods that are performed at the global pixel level, we
focus on ROIs and learn patterns of frame evolutions at the
transformation level. Given a sequence of frames or even a
single frame, our system is able to accurately predict the next
frame and long-term future frames. Moreover, it can produce
diverse plausible future frames that preserve continuity and
consistency with the input.
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TABLE VII. QUANTITATIVE COMPARISON WITH RELATED VISUAL
PREDICTION WORKS FROM A SINGLE FRAME ON THE 2D SHAPE DATASET.

Methods PSNR SSIM RIQA
Baseline 12.2 85.6 23.3

Optical Flow [14] 15.7 87.8 15.7
Beyond MSE [13] 17.1 88.3 12.1

Transformation-based [34] 16.6 86.9 7.8
Ours 21.3 88.3 9.3

Fig. 13. Video prediction from a single frame. (a)(b) denote the input image
and one generated video by our method and the baseline. The first column
of (c) indicates different condition codes, the remaining columns show the
difference frames of the generated difference frames compared with the input.
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