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ABSTRACT
This paper presents a compact shot representation for video
semantic indexing (SIN). The proposed representation con-
sists of visual cues from only two frames, i.e., key frame (KF)
and difference frame (DF), which are both constructed with s-
patial pyramid. The KF describes static information while the
generated DF captures non-static information. Each region
of DF is derived from the same location in a selected frame,
which has the most salient difference compared with the key
frame in that region. We introduce a variation of DF to further
enhance our model. Experimental results on TRECVID SIN
demonstrate that our method obtains better accuracy than the
state-of-the-art, while requiring less storage space and con-
suming time.

Index Terms— Video Semantic Indexing, Compact Shot
Representation, Key frame (KF), Difference frame (DF)

1. INTRODUCTION

Video semantic indexing (SIN), aiming at assigning semantic
concepts to video shots, is a challenging problem and first pre-
sented as an open task in the TRECVID [1]. As an extension
from static image classification to video domain, SIN has to
cope with a much larger feature space of multi frames which
makes the famous semantic gap between low-level features
and high-level semantic concepts even more difficult.

Most existing approaches prefer to generate a shot repre-
sentation which is fed to SVM for classification. One major
challenge is to cope with multi-frame visual features since a
shot often contains dozens or even hundreds of frames, which
has a lot of redundancy [2]. Recently, local features such as
HOG/HOF [3], HOG3D [4] and 3D-SIFT [5] based on space-
time interest point (STIP) [6] and dense trajectories [7, 8] are
used to achieve powerful representations for video sequence,
and show good performance for action recognition. But it
may fail to be used in general videos such TRECVID SIN
dataset which consists of Internet videos from a wide range of
semantic concepts such as objects, scene, behavior and event.
The reported state-of-the-art approach [9] uses tree-structured
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Fig. 1. The generation of our compact shot representation.

Gaussian mixture model (GMM) for visual features densely
sampled from the key frame and sparsely sampled from others
in a shot, with combination of audio features for SIN explo-
ration. However, their overall model is heavy with a lot of
burdens on storage space and consuming time.

In this paper, we propose a compact shot representation
leveraging visual features from only two frames. One is the
selected key frame to describe static information and the other
is a generated one which we call difference frame to capture
movement information. We concatenate the visual features of
key frame and difference frame to obtain a compact represen-
tation for each shot with static and non-static understanding.
A variation of difference frame is introduced to further en-
hance our method. We evaluated our method on TRECVID
2010 SIN benchmark and show promising results.

The remainder of the paper is organized as follows. Sec-
tion 2 reviews the related work for SIN, and Section 3 propos-
es our framework with focus on difference frame generation.
Experimental results with analysis and comparison are pre-
sented in Section 4, and we conclude the paper in Section 5.

2. RELATED WORK

A basic approach for semantic indexing is based on bag-of-
feature (BoF) model which classifiers video shot by creating
histograms of quantized low-level features. To this end, var-
ious attempts have been made from the following two direc-
tions, i.e., using only key frame(s) and all the frames in a shot.

For the first direction, [10] employs only the selected key
frames (average 7 for one shot) and regards SIN as a mul-
tiple instance learning problem, although with the help of
advanced locality-constrained linear coding (LLC) strategy,
their performance is still below the average. [11] combines the
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Fig. 2. Illustrations of generating difference frame. All the frames in a shot are shown at the top. We select D pyramid segments
from D frames to form difference frame. Each selected segment has the fewest matches to key frame in the same region.

strength of object detection by region of interest (ROI) detec-
tion to explore semantic indexing. [12] leverages shot-based
low-level features and early fusion strategy. [13] uses cross-
domain fusion. Similarly, [14] provides multi-modal analysis
with textual metadata information.

On the other hand, [2] uses visual features and audio fea-
tures for all the frames in a shot, with GMM and hidden
Markov model (HMM) to achieve a uniform representation.
[9] proposes a fast solution to the parameter estimation of G-
MM which uses adaptive maximum a posteriori (MAP), ob-
taining state-of-the-art performance.

However, both of the two class methods have their own
limitations. The first class fails to capture movement infor-
mation while the second suffers a lot of computation burden-
s. To overcome these limitations, we attempt to generate a
difference frame for each shot to balance the richness and re-
dundancy which can capture the non-static region in different
spatial scales. With combination of key frame features, we
exploit video semantic indexing with a compact shot repre-
sentation consisting of visual features from only two frames.

3. APPROACH

We assume that each video is automatically segmented into
shots with a selected key frame as provided by TRECVID
SIN task. We use spatial pyramid to partition all the frames
and generate a difference frame for each shot which is de-
scribed in Section 3.1. We investigate a variation of difference
frame as presented in Section 3.2 and finally we concatenate
features of key frame and difference frame to obtain the shot
representation for SVM classification in Section 3.3.

3.1. Difference Frame

We show how to generate the difference frame for each shot.
First, we describe multi-resolution feature matching between
two sets of features, and then employ this technique to select

each spatial pyramid segment of difference frame, by search-
ing all the frames in a shot, to find the optimal region with the
most salient difference compared with key frame (Fig.2).

3.1.1. Multi-resolution feature matching

The multi-resolution feature matching is first presented
in [15] which is able to find an approximate correspon-
dence between feature sets. Let X and Y be the two sets
of d-dimensional features extracted from two frames in a
shot. We place a sequence of increasingly coarser grids over
the feature space and take a weighted sum of the number of
matches that occur at each level of resolution. At any fixed
resolution, two points are thought to match if they fall into
the same cell of the grid, and matches found at finer resolu-
tions are weighted more highly than matches found at coarser
resolutions. Specifically, a sequence of grids at resolution
0, ...,L is constructed such that the grid at level ` has 2` cells
along each dimension, for a total of D = 2d` cells. Let H`

X
and H`

Y denote the histogram of X and Y at this resolution,
so that H`

X (i) and H`
Y(i) are the numbers of points from X

and Y that fall into the i-th cell of the grid. Then the number
of matches at level ` is given by the histogram intersection
function [16].

I(H`
X , H

`
Y) =

D∑
i=1

min (H`
X (i)−H`

Y(i)) (1)

Since the number of matches found at level ` also includes
all the matches found at the finer level ` + 1, the number of
new matches at level ` is given by I` − I`+1. The weight
associated with level ` is set to 1

2L−` , which is inversely pro-
portional to cell width at that level. Intuitively, we want to
penalize matches found in larger cells because they involve
increasing dissimilar features. Putting all the pieces together,
we get the total matches between two feature sets which is
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called multi-resolution feature correspondence:

C(X ,Y) = IL +
L−1∑
`=0

1

2L−`
(I` − I`+1)

=
1

2L
I0 +

L∑
`=1

1

2L−`+1
I`

(2)

3.1.2. Selecting pyramid segments for difference frame

Since we have a feature matching measurement between two
feature sets, we introduce our application of this technique to
generate a difference frame for each shot. Suppose a shot s
contains n frames F = {f1, ..., fn} and the key frame is la-
beled as fk. We use p level spatial pyramid to partition each
frame into 2p× 2p segments and develop totalN =

∑p
i=0 2p

regions for each frame. Each spatial pyramid region in d-
ifference frame comes from a selected frame, in which the
feature set in that region has the fewest correspondences be-
tween that in key frame. Intuitively, the generated difference
frame is expected to contain all the salient changes in differ-
ent spatial scales for a shot. We achieve this by searching the
fewest correspondences between feature sets in each region in
all frames and key frame. Then the region i in the difference
frame is searched by

Si = min
f∈F

C(T f
i , T fk

i ) (3)

Where T f
i denotes the feature set of frame f in region i and

the T fk
i is the feature set of the same region in key frame.

Fig.2 presents an example of generating a difference frame
with 2-level pyramid. Note that the segments in p level do not
cover the contents of p− 1 level since we only use the spatial
pyramid representation of difference frame.

3.1.3. Variation of difference frame

Each spatial region of difference frame is expected to contain
the most salient change in that location in a shot. However,
the selection method in Section 3.2.2 uses right the feature set
in the region of the selected frame which focus on the static
description after a motion happens. We investigate to employ
the difference of two feature sets to indicate the non-static
change as a variation. For a feature setX in a SP region of key
frame and the selected corresponding feature set Y , we define
a set D, calculated as Di = |Xi − Yi|1 where i is the i-th
descriptors, to represent the difference between two regions.
We refer difference frame generated by the select frames in
Section 3.1.2 as selected-DF (s-DF), while the one generated
using the set D is denoted as difference-DF (d-DF).

3.2. Shot representation and classification

By now we have obtained difference frame in a universal spa-
tial partition with the key frame. We then concatenate them

into a single vector to construct a signature to characterize
a shot, which contains both static and non-static information.
Local descriptors are coded with LLC strategy [17] to achieve
a codebook and we set the size as 4, 000 which has shown
empirically to give good results. We use max pooling in a
row-wise manner for spatial pooling. For classification, we
use simple linear SVM where the penalty parameters are op-
timized via 5-fold cross validation on the training data using
libSVM implementation [18].

4. EXPERIMENTS

4.1. Dataset & Experimental Settings

Our experiments are conducted on TRECVID 2010 SIN
dataset which consists of 400h Internet archive videos. The
shot boundaries and key frames are automatically detected
and provided. Half of the videos are used for training, and
the others are used for testing. The task is to detect 30 se-
mantic concepts including objects, events and scenes which
are considered meaningful for video exploitation. The labels
for training data are created using a collaborative annotation
system [19]. The evaluation measures are mean average pre-
cision (Mean AP) which is defined as the mean of APs over
all 30 target concepts. APs are given as

AP =
1

R

N∑
r=1

Pr(r)× Rel(r) (4)

where R is the number of positive samples, N is the number
of testing samples, Pr(r) is the precision at rank of r, and
Rel(r) takes a value of one if the r-th shot is positive; other-
wise, it takes zero. The AP is estimated by using a method
called inferred average precision (inf AP) as [20].

As for experimental settings, we mainly describe the fea-
tures in our experiments since the detail implementation of
our shot representation is presented aforementioned.

Visual feature. We extract SIFT and hue histogram with
dense sampling for all the frames to generate difference frame
[21]. This feature combines both gradient and color informa-
tion, obtaining a 164-dimensional low-level descriptors con-
sisting of 128-dimension SIFT features and 36-dimension hue
histograms. PCA is used to reduce the dimensions to 32. Sift-
GPU implementation is used for SIFT feature extraction [22].

Audio feature. We use mel-frequency cepstral coeffi-
cients (MFCC) audio features as complementary cues. The
38-dimension audio features consists of 12-dimension M-
FCCs, 12-dimension ∆ MFCCs, 12-dimension ∆∆ MFCCs,
1-dimension ∆ log-power, and 1-dimension ∆∆ log-power.
Here, ”∆” means the derivative of the feature. We implement
MFCC extraction wiht a speech recognition toolkit HTK [23].
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Method KF+s-DF KF+d-DF +Audio GMM [9] Method KF+s-DF KF+d-DF +Audio GMM

Concept Inf AP Inf AP Inf AP Inf AP Concept Inf AP Inf AP Inf AP Inf AP
Airplane 0.150 0.162 0.213 0.117 Animal 0.139 0.152 0.194 0.076
Asian-people 0.014 0.055 0.052 0.009 Bicycling 0.105 0.182 0.121 0.056
Boat-ship 0.051 0.099 0.164 0.084 Bus 0.025 0.084 0.095 0.016
Car-racing 0.092 0.148 0.285 0.043 Cheering 0.092 0.152 0.247 0.051
Cityscape 0.132 0.197 0.166 0.179 Classroom 0.078 0.139 0.126 0.021
Dancing 0.123 0.252 0.291 0.067 Dark-skinned-people 0.162 0.192 0.157 0.203
Demonstration-or-protest 0.170 0.192 0.185 0.132 Doorway 0.082 0.142 0.179 0.098
Explosion-fire 0.126 0.230 0.268 0.047 Female-face-closeup 0.150 0.267 0.184 0.178
Flowers 0.051 0.138 0.125 0.044 Ground-vehicles 0.142 0.182 0.199 0.206
Hand 0.067 0.120 0.106 0.090 Mountain 0.122 0.138 0.148 0.164
Nighttime 0.106 0.182 0.133 0.132 Old-people 0.051 0.136 0.125 0.063
Running 0.143 0.269 0.224 0.077 Singing 0.252 0.259 0.360 0.188
Sitting-down 0.009 0.058 0.043 0.004 Swimming 0.288 0.354 0.302 0.276
Telephones 0.124 0.245 0.285 0.018 Throwing 0.103 0.152 0.164 0.066
Vehicle 0.182 0.214 0.272 0.200 Walking 0.160 0.264 0.223 0.143

Mean Inf AP 0.150 0.179 0.188 0.102

Table 1. Performance comparison of Inf APs and Mean Inf APs.

4.2. Results & Comparison

Mean Inf APs. Table 1 summarizes obtained Inf AP and
Mean Inf AP for two types of DF, fusion with audio features
and the state-of-the-art approach [9] which employs tree-
structured GMM for the features of all the frames in a shot.
As can be seen, our three methods in the left columns perfor-
m better than the state-of-the-art method for the majority of
semantic concepts. Specifically, for some action-based cases
such as Dancing and Throwing, d-DF yields better accuracy
than s-DF. This can be explained that d-DF acts like a motion
detector which can capture more movement information. Au-
dio features strength our model in some concepts concerned
with sound such as Car-racing and Singing. Overall, our best
performance outperforms the state-of-the-art [9] by 84.3%.

Complexity. We consider complexity on storage space
and consuming time. Since our representation consists of vi-
sual features from only two frames, certainly we need less
space storage as the reported work in the literature using the
least frames, to our best knowledge, is [7] which employs av-
erage 7 key frames for each shot. As concerned with consum-
ing time, for fair comparison we only discuss the process af-
ter feature extraction before SVM training since we use fewer
visual features. [9] spent about 3 seconds to make parameter
estimation while ours only need less than 1 second to generate
difference frame.

4.3. Analysis and discussion

We first look into our model. We investigate to employ differ-
ent settings to generate our difference frame with main focus
on the resolution pyramid level L to select each segment and
the spatial pyramid level p to obtain frame representation. Ta-
ble 2 lists detailed performance comparison which indicates
that L = 5 along with p = 4 yields the best accuracy.

Although performing better than the state-of-the-art [9],
the overall accuracy is still low compared with that of human

H
HHHL

p
2 3 4 5 6

2 0.138 0.126 0.132 0.140 0.133
3 0.145 0.149 0.151 0.149 0.135
4 0.162 0.170 0.172 0.166 0.143
5 0.155 0.163 0.188 0.154 0.152
6 0.137 0.152 0.158 0.149 0.142

Table 2. Mean Inf APs with different parameter settings for
d-DF generation with audio features.

annotation. We discuss this issue as follows. First, the dataset
consists of low-quality videos upload by normal people and
there are some errors with the automatically shot boundary
detection and key frame extraction. Second, the SVM train-
ing suffers from the extremely unbalanced training data. For
instance, for the concept Bus, there are only 31 positive shots
with 68, 980 negative shots, and for Car-Racing, there are 21
positive samples with 101, 343 negative samples. This poses
severe challenges to the training algorithm. Third, although
with the help of difference frame, our model still lacks the
power to detect some actions not contingent to certain scenes,
such as Sitting-down.

5. CONCLUSION

In this paper, we propose a compact shot representation com-
posed of only key frame and difference frame for video se-
mantic indexing. The key frame provides static description
while the difference frame captures valuable motion informa-
tion. Each spatial region of difference frame is derived from
a certain selected frame with the most salient difference com-
pared with key frame in the same region. Our method outper-
forms the state-of-the-art approach by 84.3% on TRECVID
SIN 2010 benchmark, while consuming less storage space
and execution time.
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