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ABSTRACT Knowledge distillation (KD) is a powerful technique that enables a well-trained large model
to assist a small model. However, KD is constrained in a teacher-student manner. Thus, this method may
not be appropriate in general situations, where the learning abilities of two models are uncertain or not
significantly different. In this paper, we propose a collaborative learning (CL) method, which is a flexible
strategy to achieve bidirectional model assistance for two models using a mutual knowledge base (MKB).
The MKB is used to collect mutual information and provide assistance, and it is updated along with the
learning process of the twomodels and separately deployedwhen converged.We show that CL can be applied
to any two deep neural networks and is easily extended to multiple networks. Compared with the teacher-
student framework, CL can achieve bidirectional assistance and does not impose specific requirements on
the involved models, such as pretraining and different abilities. The experimental results demonstrate that
CL can efficiently improve the learning ability and convergence speed of the two models, with superior
performance to a series of relevant methods, such as ensemble learning and a series of KD-based methods.
More importantly, we show that the state-of-the-art models, such as DenseNet, can be greatly improved using
CL along with other popular models.

INDEX TERMS Bidirectional model assistance, collaborative learning, deep neural networks, mutual
knowledge base.

I. INTRODUCTION
We are in an era of deep neural networks being designed
constantly. In particular, a typical evolution of successful
deep networks is the streamline of LeNet [1], AlexNet [2],
VGG [3], ResNet [4] and DenseNet [5]. Today, we are
easy to access these models to produce promising results
on various tasks such as computer vision, natural language
processing and speech recognition [5]–[8]. Most researchers
are devoted to hand-crafted engineering of single networks
by borrowing advanced techniques from previously designed
networks or making new attempts, including architecture
design [9], parameter tuning [10], and optimization [11].
However, few studies have focused on using these deep neural
networks in an interactive manner. Although existing model
integrationmethods such as voting, fusion and ensemble have
made some progress [12]–[15], they have major limitations
such as expensive training and deployment, lack of knowl-
edge sharing in the learning process, and difficulty adapt to
deep neural networks [16]–[18].

Knowledge distillation (KD) [17] is a recently proposed
method that enables a well-trained large model to help a

small model. KD views the behavior of the large model
such as the prediction as ‘‘soft target’’ and uses this ‘‘soft
target’’ as additional supervision to assist the small model.
KD has been shown to facilitate performance improvements
in a small model by providing new knowledge in addition
to the standard supervision [19]. Many subsequent works
derived from KD have achieved promising results in var-
ious scenarios, such as network training [20], embedding
learning [21], transfer learning [22], semantic segmenta-
tion [23] and object detection [24]. Although these different
approaches vary in terms of distilled knowledge expression
and application scenarios, they all share a key characteristic:
they are performed in a teacher-student framework. To be
more precise, these approaches all require a well-trained
teacher model to provide the ‘‘soft target’’, and this teacher
model has to be more powerful than the student model.
More importantly, the teachermodel cannot be improvedwith
KD. This indicates that KD performs a unidirectional model
assistance procedure.

We attempt to break the aforementioned limitations and
seek a more general solution to implementing collaboration
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of the existing models, and enabling them to assist each other
in a bidirectional way. Our motivation also derives from the
perspectives of feature extraction and data representation.
We observe that various models of different network struc-
tures [3]–[5], [25]–[27] can produce similar and promising
results on the same dataset. This suggest that the same data
can be described from different aspects with different kinds
of abstraction, which encourages us to pursue a more com-
prehensive investigation of data by learning different feature
hierarchies. From the perspective of game theory, if we have
many agents capable of achieving the same goal, then they
should be able to collaborate to achieve a better performance
by sharing information in the learning process.

In this paper, we present collaborative learning, a flexible
method to achieve bidirectional model assistance. Collabora-
tive learning can be applied to any existing feed-forward com-
putation models, especially deep neural networks, to enhance
their learning ability in a win-win process, by sharing mutual
information in the learning process. In particular, collab-
orative learning is performed around a mutual knowledge
base (MKB), which is used to collect different abstractions of
data in the learning process of each model to assist the other.
MKB contains an auto-encoder structure, a metric learning
module and a verification component. The encoder is in
charge of transferring intermediate feature maps of involved
models to unified embeddings in a mutual space, where the
embeddings are then sent to three trunks. The first trunk is
metric learning where additional supervision can be derived
to assist each other. The second trunk is a decoder which
sends the embeddings back to the original networks to keep
them end-to-end trainable. The last trunk is the verification
part which links the embeddings directly to the semantic label
to ensure the quality of embeddings as well as the mutual
space. We provide good practices to insert MKB in the proper
position with careful configurations to achieve the best per-
formance. In addition, usingmultipleMKBs can further boost
the performance of collaborative learning. Furthermore, with
adaptions to MKB implementations, collaborative learning
can be easily extended to multiple networks. Compared with
a series of relevant methods in teacher-student fashion, col-
laborative learning enjoys bidirectional assistance and needs
no specific requirements of the involved models such as
pretraining and ability differences. Experimental results show
that collaborative learning has three major advantages:
• It can facilitate fast convergence among the associated
models, which suggests that useful mutual knowledge
is efficiently leveraged in the CL process. Each of the
two networks trained with CL can reach the saturation
region at least two times faster than individually trained
networks.

• It is able to improve the learning ability of the two
involved models when converged. This shows that
collaborative learning achieves efficient bidirectional
model assistance. We compare the proposed strategy
with a series of relevant methods and show that it
presents promising performance improvements.

• It is able to improve state-of-the-art models with
other advanced models. This indicates that collabora-
tive learning is general and powerful solution. We use
DenseNet [5], a state-of-the-art deep network, and show
that it can be considerably improved with other deep
networks.

The remainder of this paper is organized as follows.
Section II reviews the relevant works from three perspectives.
Section III describes the details of collaborative learning,
including its key modules, working principles, training man-
ners and extensions. Section IV evaluates the performance of
collaborative learning on five popular large-scale benchmarks
and demonstrates its advantages on three aspects. Section V
concludes this paper.

II. RELATED WORKS
A. MODEL ASSISTANCE
In the literature, model assistance is used in various scenarios.
One common way to achieve model assistance is serial exe-
cution, such as using the output of selective search [28] as the
input of CNN to perform R-CNN [29]. This assistance is uni-
directional, where the source model assists the target model,
while the latter offers no help for the former. An improved
version is Faster R-CNN [30], where the RPN and CNN help
each other in a bidirectional process, which is also the prop-
erty of our collaborative learning. Later, model assistance
is also exploited with domain adaption and unsupervised
learning [31]. In a nutshell, model assistance attempts to
extract mutual knowledge for assistance, which can be cate-
gorized into knowledge integration and knowledge transfer.
Specifically, a typical solution of knowledge integration is
ensemble learning [32], where the key is to integrate learned
knowledge of all models such as using ensemble predictions,
widely adopted in recognition competitions [33]. The key
concept underlying knowledge transfer is to extract what one
model learns to assist other models. For example, [34] used
what a wide network learns to help the fit network for better
training. Our proposed collaborative learning can be viewed
as a combination of both knowledge integration and transfer,
since it is performed by sharing mutual knowledge along with
the learning processes of the involved models.

B. KNOWLEDGE DISTILLATION AND EXTENSIONS
A recent successful method for model assistance is knowl-
edge distillation (KD) proposed by Hinton et al. [17]. KD is
a successful model assistance method that can efficiently
leverage what a large model learns as ‘‘soft target’’ to guide
the training of a small model. Later, its variants and exten-
sions achieved promising results. In particular, [34] devised a
hint-based training approach that uses the pretrained teach-
ers hint layer to assist students guided layer. The trained
deep student network showed better accuracy with fewer
parameters compared to the original wide teacher network.
Reference [19] developed a soft decision tree to exploit
the distilled knowledge in the teacher model. Very recently,
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FIGURE 1. Illustration of collaborative learning performed with two standard deep neural networks. More details can be found in
the context.

a series of applications using KD are presented such as object
detection [24], person-ReID [35], domain adaption [31],
transfer learning [22]. However, the above works are all lim-
ited in the teacher-student manner. Specifically, the teacher
model provides guidance to enhance the learning process
of the student model, while the teacher model itself cannot
be improved. Our collaborative learning can overcome this
limitation, and enables both models to assist each other and
achieve bidirectional improvements in terms of fast con-
vergence and classification accuracy. In addition, we show
that state-of-the-art models can be further improved by a
large margin, using collaborative learning with other popular
models, which cannot be achieved by other methods such as
ensemble learning and fusion [12], [13], [36].

C. JOINT LEARNING AND ADDITIONAL SUPERVISION
Our method is also related to joint learning technique. In a
multiple model system, joint learning is often used by sharing
weights or jointly optimizingweights of each involvedmodel.
A typical line of works is multi-task learning (MTL) [37],
which aims to improve all tasks simultaneously by combining
common knowledge from all tasks such as [38] and [39].
There are other joint learning works performed for object
detection [24], visual question answering [40], and person
re-identification [35]. Compared with MTL, our collabora-
tive learning also aims at sharing common knowledge from
each model, but performed within the same task. In addition,
we construct a learnable module and a mutual space which
are trained along with each model, instead of simply jointly
optimizing the weights.

When training amodel in the supervised setting, in addition
to the true label, one canmine other information for additional
supervision. This is also the key idea behind of our collabora-
tive learning. This additional supervision can be derived from
various sources and one of the most popular is metric learn-
ing [41], widely used in retrieval tasks [21], [35], [42]–[44].

Specifically, [42] learned an energy-based similarity met-
ric that maps input patterns into a target space such that
the L1 norm in the target space approximates the seman-
tic distance in the input space. Reference [43] designed a
triplet loss to train three same networks with an additional
supervision on its semantic similarity. Reference [44] intro-
duced a deep mutual learning method for simultaneous train-
ing of two models by adding an additional mutual loss for
each, which forces them to produce similar final predictions.
Reference [35] employed this idea for the task of person
re-identification. Reference [21] encouraged the model to
produce similar feature maps to the semantic label of input
data on Wasserstein distance. The additional supervision in
our collaborative learning is derived from MKB and can be
used by all the involved models.

III. APPROACH
A. OVERVIEW
We use two standard deep neural networks (stacked by a
series of convolutional layers followed by fully connected
layers) under a classification task scenario to explain the
principles of collaborative learning. As shown in Fig. 1, col-
laborative learning is performed around a mutual knowledge
base (MKB), which is in charge of collecting information in
the learning process of each involved model to assist each
other.

When putting MKB between two models, the feature maps
of current layers of both networks are two abstractions of the
current input data. MKB uses these abstraction to produce
integrated knowledge in a mutual space as additional super-
vision, and sends it back to both networks to facilitate their
learning processes. In this way, the loss function for each deep
neural network is formulated as

Lfinal = Lcls + αLcl (1)

Lcl = Lmetric + Lverification (2)
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where the first item Lcls in Equation 1 indicates the standard
classification loss, the latter Lcl is the collaborative loss
induced by MKB and collaborative learning. In particular,
Lcl consists of two parts. The first one isLmetric, which is used
to perform metric learning to mine mutual knowledge about
the data, which is learned from each network. In particular,
Lmetric is performed in a constructed mutual space, which
can be regarded as a new abstraction level of the input data.
Note that this level can not be learned with the original two
networks individually. The second one is Lverification, used to
ensure the quality of the mutual space. In practice, we directly
link this mutual space to the final semantic space, which is
the same as the standard supervision Lcls. α is a coefficient
that controls the ratio of true label and mutual information to
avoid over-regularization.

As shown in Fig. 1, by interacting with all two models,
MKB collects different abstractions of data as an integra-
tion of feature hierarchies. On the other hand, it uses such
knowledge to facilitate the learning processes of each model.
Note that collaborative structured losses are shared by all
the involved models in the collaborative structure. Compared
with previous works that force two deep neural networks to
generate similar predictions [44], the loss derived from our
collaborative structure is governed by the encoder-decoder
structure and updated along with the learning processes of
all the involved models.

B. MKB IMPLEMENTATIONS
MKB includes an encoder-decoder structure, a metric learn-
ing module and a verification component. As shown in Fig. 1,
the encoder receives feature maps of involved networks as
input. Since feature maps of each network may have various
sizes, this encoder is designed to resize them into unified
codes. These two codes are then sent to a space transfer,
which is constructed by a series of convolutional layers,
to map them to embeddings in a mutual space, where we
can leverage their relevance to achieve assistance by metric
learning. This mutual space shares the same property with
semantic space where two embeddings are reasonable to
compare [17].

The output of each network in the mutual space has three
branches using the same value as shown in Fig. 2. The first
brunch routes back to the original network architecture and
the input of the next layerH is computed by

H = (1+ σ (M))⊕ X (3)

where X is the feature map of previous layer and also the
input of MKB, M is the embedding in the mutual space,
σ is the elu function and ⊕ is the element-wise sum oper-
ation. This operation firstly ensures that all the modules in
our framework are end-to-end trainable. Second, the circuit
routed in MKB acts as a selection operation that helps to
attend to the important region in the previous feature maps,
as shown in Fig. 2, similar to recent proposed residual func-
tion [4] and residual attention network [45].

FIGURE 2. Integration between two consecutive layers with one MKB.

The other two branches are sent to metric learning and
verification part to act as additional supervision for each
other. We expect MKB can help two networks learn from
each other and encourage their embeddings in the mutual
space mimic each other. Different from the basic KD [17]
and its variant [19], where the ‘‘soft target’’ comes from
the cumbersome ensemble model and the value is certain
for each input, our metric learning is dynamic since it is
governed in the mutual space, which is updated along with
the training processes of the involved models. The specific
implementations of metric learning depend on the input data
for each network, as addressed in Section III-D. In particular,
we define the metric learning loss in Equation 1 as

Lmetric =

 D(embed1, embed2)∣∣∣∣∣∣D(embed1, embed2)−W2
2 (x1, x2)

∣∣∣∣∣∣2
2

(4)

where the first line is the distance between two embeddings
in the mutual space (note that this distance could in general
be replaced by any other similarity metric such as Ln norm.
In our experiments, the dot product distance worked best
in terms of convergence speed and classification accuracy.),
corresponding to the siamese input situation. The second line
addsW2

2 Wasserstein distance for different inputs, and x1, x2
are two input images. This is the situation of different input.

The verification loss Lverification is designed to improve the
quality of embeddings, which receives the embedding and
maps them to the semantic label with a softmax layer. This is
the key that enables our collaborative learning to be different
from other KD-based methods, which are performed in the
feature maps of the middle layer [22], [24], [34]. In partic-
ular, they encourage the middle feature maps of the student
network tomimic the output of the teacher network. However,
directly performing mimic learning is not reasonable with-
out considering the whole feature map flow of the teacher
network. In contrast, our verification loss ensures that the
mutual space that we use for metric learning is a high-quality
space, by directly linking the embeddings in the mutual space
to the semantic label. In practice, we find verification part
is essential since the performance of additional supervision
depends highly on the quality of mutual space.

DEPLOYMENT LOCATION
Theoretically, MKB can be deployed in any location between
two networks as long as it takes as input the feature maps of
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TABLE 1. A typical architecture of collaborative learning with one MKB and feature map evolutions, using SmallNet [31]
and ResNet-34 [4] on CIFAR-10 dataset.

involved models and sends the outputs of corresponding size
back to keep them end-to-end trainable. Experimental results
suggest putting MKB in backward layers often produces
better performance, which is perhaps because the mutual
knowledge in high level is more useful. However, placing
the MKB in the fully connected layers often results in worse
performance. Fig. 1 shows a typical insertion of MKB in
convolutional layer of two deep neural networks. A specific
evolution of feature map can be seen in Table 1. In practice,
we find that the MKB should be deployed in locations that
ensure that the input feature maps have similar sizes.

One can set multiple MKBs with this criterion and we
report such experimental result in Fig. 6. MKB enjoys char-
acteristics of flexible deployment like recent proposed spatial
transformers [46], which means it can be inserted to any
two or multiple deep neural networks with the aforemen-
tioned deployment practices.

C. TRAINING STRATEGY
1) FEEDING DATA MANNERS
As discussed before, the metric learning loss depends on
the way of preparing feed data, which can be implemented
with two choices. One is using siamese input, where we
send the same input to both networks and the first line in
Equation 4 is utilized. The other is using different inputs,
as it is also reasonable to feed different inputs to promote
collaborative learning to mine mutual information about their
relationship, as used in [21] and [42]. In this way, MKB is
responsible to preserve the distance in the mutual space to
mimic the distance in the original space, and the second line
in Equation 4 is activated to calculate the metric loss.

2) TRAINING MANNERS
For the training procedure of our collaborative learning,
we introduce two manner, i.e. simultaneous training and
iterative training. Both are performed for each mini-batch

throughout the whole training process. Specifically, in each
training step, simultaneous training requires that the param-
eters of all the involved models be updated simultaneously,
whereas iterative training iteratively updates the parameters
of one model while keeping the parameters of the other fixed.

Fig. 3 shows a typical collaborative learning procedure
schematically. In the training phase, the MKB is updated
along with the two models. While in the testing phase,
the MKB is separately used in each model.

D. EXTENSION TO MULTIPLE MODELS
Collaborative learning can be easily extended from two mod-
els to multiple models, by adjusting the metric learning part
of MKB while keeping other structures unchanged. In partic-
ular, we use the metric loss for siamese input and define the
improved version for multiple models as

Limetric =
1

n− 1

n∑
i=1,i6=j

D(embedi, embedj) (5)

FIGURE 3. Training (up) and testing (down) stages in collaborative
learning.
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where n is the total number of the involved models in col-
laborative learning. The training procedure with multiple
models is a straightforward extension of that for two models.
In addition, it can be distributed by learning each network on
one device and passing the small probability vectors between
devices.

Instead of Equation 5 where all the involved models learn
from each other, we can also make each one learn from all
the others by regarding them a universal model. In this way,
Equation 5 becomes

Limetric = D(embedi, embedothers) (6)

where embedothers = 1
n−1

∑n
j=1,j6=i(embedj) is the averaged

sum of all the other embeddings.

IV. EXPERIMENTS
A. DATASETS AND IMPLEMENTATION DETAILS
We consider three aspects to demonstrate the effectiveness
of our collaborative learning. Section IV-B shows the two
networks can obtain a fast optimization with collaborative
learning. In addition, the two networks can be both improved,
with superior performance to a series of relevant methods,
including KD and its variants. as described in Section IV-C.
Finally, Section IV-D demonstrates that state-of-the-art net-
work can be improved, by collaborative learning with other
popular networks. We evaluate our method on four popular
datasets, with widely used settings on image classification
task as follows.
• The MNIST dataset [47] consists of 60, 000 train-
ing images and 10, 000 test images, and each image
is 28× 28 belonging to a digit from 0 to 9. The pixel
values are normalized to lie in the [0, 1] range. No other
form of data pre-processing or augmentation is per-
formed. The weights in each layer are initialized by
sampling random values from N (0, 0.01), whereas the
bias vectors are initialized to 0.

• The CIFAR-10 dataset [48] contains 50, 000 training
images with 5, 000 images per class and 10, 000 test
images with 1, 000 images per class. The CIFAR-10
dataset comprises 32 × 32 pixel RGB images with 10
classes. However, we padded 4 pixels on each side to
make the image size 40× 40 pixels. Randomly cropped
32 × 32 pixel images were used for training, and the
original 32× 32 pixel images were used for testing.

• The CIFAR-100 dataset [48] uses 50, 000 training
images with 500 images per class and 10, 000 test
images with 100 images per class. The CIFAR-100
dataset contains 32 × 32 pixel RGB images with 100
classes.We did not use augmentationmethods unlike the
CIFAR10 case to make the various experiment settings.

• The STL-10 dataset [49] contains 10 object classes with
5, 000 training and 8, 000 test images. There are 10 pre-
defined folds of training images, with 500 images in
each fold. In each fold, a classifier is trained on a specific
set of 500 training images, and tested on all 8, 000 test-
ing images. Similar to prior work, the evaluation metric

we report is average accuracy across 10 folds. Due to its
relatively large image size (96×96), we follow previous
researches to downsample the images to 32× 32.

• The ILSVRC 2012 classification dataset [50] consists
1.2 million images for training, and 50, 000 for valida-
tion, from 1, 000 classes. We adopt the same data aug-
mentation scheme for training images as in [4] and [51]
and apply a single-crop with size 224× 224 at test time.
Following [4], [5], [51], and [52], we report the top-1 and
top-5 classification accuracy on the validation set.

The encoder of MKB is a series of convolutional layers
that map two feature maps into mutual codes of unified size.
The space transfer is stacked with two convolutional layers
followed by a flatten layer, which outputs an embedding in
the mutual space whose size is set as 1, 024. The decoder
is a deconvolutional layer that maps the embedding back
to the original network with Equation 3. Table 1 shows a
typical situation of employing collaborative learning with
one MKB, and the evolutions of feature maps with two deep
neural networks. In metric learning, dot product distance and
Wasserstein distance are implemented with recommended
parameter choices [21], [31]. The coefficient α in Equation 1
is set 0.2 to encourage the learning process is dominated by
the true label. As for training, results in Fig. 4 suggest that
the optimal suite of collaborative learning is using siamese
input and simultaneously training, where the learning rate and
the weight decay are kept same for two networks. We use
these common settings to implement collaborative learning
to compared with other competitive works. Other hyperpa-
rameter choices are provided in the context of the following
experiments.

For both individual training and collaborative learning,
we used the same experimental settings to examine the
effect of collaborative learning. All the networks are trained
using stochastic gradient descent (SGD). We adopt batch
normalization (BN) [10] immediately after each convolution
and before activation. We initialize the weights as in [53]
and train both networks from scratch. On MNIST, CIFAR-
10/100 and STL-10, we train using mini-batch size 128
for 200 epochs, which contain approximately 85, 000 iter-
ations. The learning rate starts from 0.1 and is divided
by 10 when the error plateaus, following [4] and [53].
On ImageNet, we train using mini-batch size 256 for 300
epochs, which contain around 1, 400, 000 iterations. The
learning rate starts from 0.1 and is divided by 10 when
the error plateaus, following [4] and [5]. We use a weight
decay of 0.0001 and a momentum of 0.9. Except the
ImageNet dataset, we do not use dropout, following the
practice in [10].

B. FAST OPTIMIZATION
Compared with individual training of each network, collab-
orative learning can assist the involved networks to obtain
a fast convergence. In this section, we verify this advantage
using ResNet-34 andMobileNet, and conduct experiments on
CIFAR-10 dataset.
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FIGURE 4. Effect of the input manners (left:S; right:D) and training manners using ResNet-34 and MobileNet on CIFAR-10 dataset.

Fig. 5 represents the change of training loss and test accu-
racy over time. From the convergence procedure, we can
observe that the two network can be faster converged
(reaching the saturation region) via collaborative learning.
Specifically, using collaborative learning, ResNet-20 and
MobileNet reach the saturation region at around 30, 000 and
35, 000 iterations. When training these two networks indi-
vidually, the convergence for both networks is equivalent to
approximately 60,000 iterations. This indicates that collab-
orative learning provides useful mutual knowledge that can
assist each other for fast convergence. On the other hand,
it can be also noticed that the test accuracy of the two net-
works is also improved with collaborative learning, by 5.5%
and 6.7%, respectively. This part is further examined in the
next section with more experiments and comparisons.

FIGURE 5. Convergence procedure with/without collaborative learning
using ResNet-34 and MobileNet on CIFAR-10 dataset.

We also notice that there are several works that used a
distilled knowledge from a large network to assist the training
procedure of a small network, to obtain a faster convergence,
such as [22] and [34]. However, the teacher network can-
not be improved in terms of both optimization speed and

classification accuracy. In our method, both the involved net-
works can enjoy fast optimization via collaborative learning,
and this assistance is bidirectional.

C. BIDIRECTIONAL PERFORMANCE IMPROVEMENT
In this section, we examine the performance improvement
of the two networks via collaborative learning, compared
with other methods. We use popular deep neural networks,
including SmallNet [31], ResNet-34 [4] and MobielNet [54]
for two model evaluation. When using collaborative learning
for multiple networks, we also add GoogLeNet [55] and
VGG-16 [3]. For comprehensive comparison, we consider the
following methods:

• Individual learning (IL): Training each network
individually

• Ensemble learning (EL): Combining the final predic-
tions of each networks, followed by a trainable fully
connected layer linked to semantic label

• Distillation learning (DL 1 → 2) [17]: Using well
trained network 1 to help network 2 with KL divergence
as ‘‘soft target’’ in the final predictions

• Hint learning (HL 1 → 2) [34]: Using l2 loss to match
the intermediate feature maps of two networks in the
same position as MKB

• Deep mutual learning (DML) [44]: Forcing two net-
works to produce similar final predictions in the seman-
tic space in terms of KL divergence

• Wasserstein embedding learning (WEL) [21]: Forc-
ing two networks to produce similar embeddings with
Wasserstein distance in the original space

• MKB Structure without CL (MKB w/o CL): Each half
of MKB is combined with each network and updated
individually without metric learning and verification

1) TWO NETWORKS
Tables 2 3 4 report the performance of model assistance
using two deep neural networks. The results show that simply
using ensemble model of two deep neural networks (EL)
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TABLE 2. Test accuracy (%) of ResNet-34 and MobileNet on four datasets.

TABLE 3. Test accuracy (%) of ResNet-34 and SmallNet on four datasets.

TABLE 4. Test accuracy (%) of MobileNet and SmallNet on four datasets.

often provides limited improvement compared with IL since
each network is carefully designed and competitive. In addi-
tion, the average of other works including ours outperforms
EL, which also demonstrates the limitation of EL. When
compared with KD-based methods including DL and HL,
we obtain an improvement of approximately 5%. Our method
also outperforms two recent works DML and WEL in most
cases. Note that the aforementioned four works provide
only unidirectional assistance, where the performance of the
teacher models cannot be improved. However, with our col-
laborative learning, both the associated networks can obtain
performance improvement. In addition, we replace the col-
laborative learning process and keep the encoder-decoder
structure unchanged (MKB w/o CL) and see a clear perfor-
mance drop which indicates the importance of collaborative
learning.

2) ANALYSIS OF MKB
We examine the position ofMKB in both convolutional layers
and fully connected layers to see how it affects the per-
formance of collaborative learning. We use the architecture
described in Table 1 on CIFAR-10 dataset. The four positions
that we adopt include conv1_x, conv2_x, conv3_x and fc1.
Table 5 shows the performance comparison. The comparison
suggests that the deploying MKB on convolutional layers
often provides better results. In particular, conv2_x is the best
choice of the architecture in Table 1.

TABLE 5. Performance comparison of different MKB positions in Table 1.

We also examine the evolution of MKB in the learning
process to see how it helps collaborative learning. To this end,
we stop updating MKB in different stages of all the train-
ing process and check the final performance using current
learned information in MKB. Fig. 6 (left) shows that with
the evolution of updating MKB, the learning ability of each
involved model increases, which indicates the effectiveness
of collaborative learning.

Previously, we have shown inserting a single MKB
with collaborative learning can provide a performance
improvement. We further study whether adding more MKBs
can provide help for collaborative learning. Results in
Fig. 6 (right) indicate there is a positive potential to achieve
further improvements with more MKBs. When scaling to
multiple models, we compare with methods that can be
applied to multiple models, including IL, EL and DML.
Fig. 7 summarizes the results on CIFAR-10 dataset, where
we can observe that our method is consistently better than
other methods with various network numbers. This indicates
that the involved networks can learn from each other with
collaborative learning. The two yellow lines in both left and
right of Fig. 7 are twomanners described in Section III-D. The
results suggest Equation 6 produces a better performance for
multiple model assistance.

D. PERFORMANCE IMPROVEMENT OF THE
STATE-OF-THE-ART MODEL
In this section, we demonstrate that state-of-the-art mod-
els can be improved via collaborative learning with other
models. We choose DenseNet, a popular state-of-the-art
architecture, as one model and use several other advanced
models to act as the other one in collaborative learning.
We choose three popular networks to conduce collaborative
learning with DenseNet, including Maxout [25], network in
network (NIN) [26] and deeply-supervised net (DSN) [27]
for CIFAR-10, and GoogLeNet, VGG-16 and ResNet-34 for
ImageNet.

Table 6 shows the performance on CIFAR-10 dataset.
As provided in the original paper [5], the DenseNet-40 yields
a test accuracy of 93.00 on CIFAR-10. The performance
of training the other three networks individually can obtain
90.62, 91.19, and 91.78, respectively. While using collabora-
tive learning, we see a clear improvement of both DenseNet
and other three networks in the right column. In partic-
ular, the most significant improvement of DenseNet-40 is
obtained with DSN-34, of approximately 1.43%. In addition,
the other three networks is also able to enjoy performance
improvement.
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FIGURE 6. MKB analysis on CIFAR-10 dataset. Left: impact of different evolutions of MKB. Right: impact of the number of MKBs.

FIGURE 7. Collaborative learning for multiple models on
CIFAR-10 dataset.

TABLE 6. Performance improvement (test accuracy) using the
state-of-the-art model DenseNet-40 with other models on
CIFAR-10 dataset.

Table 7 shows the performance on ImageNet validation
set. The results are similar to that of CIFAR-10. The aver-
age improvement of DenseNet-121 can obtain around 2.82%
and 2.67%, in terms of top-1 and top-5 accuracy, respec-
tively. Considering that DenseNet is currently the reported
state-of-the-art network architecture, these results show that
collaborative learning is a efficient and powerful solution to
collaborate advanced deep networks to achieve bidirectional
assistance.

Fig. 8 gives an example of the convergence procedure
and the test accuracy change on ImageNet validation set,
using DenseNet-121 and ResNet-34. The green and blue
lines indicate the individually training procedures of the two

TABLE 7. Performance improvement (top-1 and top-5 accuracy;
single-model and 10-crop) using the state-of-the-art model
(DenseNet-121) with other models on ImageNet validation set.

FIGURE 8. Analysis of the optimization speed and the test accuracy
(top-5) using DensNet-121 and ResNet-34 on ImageNet validation set.

networks, the red and black lines are the cases of collaborative
learning. We can observe that, in the situation of the state-of-
the-art model, the conclusions are similar to that of previous
experiments in Section IV-B, i.e., collaborative learning can
provide fast optimization and bidirectional assistance.

V. CONCLUSION
In this paper, we have present a collaborative learningmethod
to achieve bidirectional model assistance. We show how to
construct the mutual space to mine the additional supervision
with MKB to assist each other. Compared with a series of
KD-based methods, collaborative learning is performed in
a peer to peer manner and enjoys bidirectional assistance.
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Besides, it is more flexible and needs no specific require-
ments about the involved models such as model ability differ-
ence and pre-training. Experimental results demonstrate that
collaborative learning can efficiently improve the learning
ability and convergence speed of the two models, with supe-
rior performance to a series of associated works. More impor-
tantly, we show that state-of-the-art models such as DenseNet
can be greatly improved using CL with other popular models.
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